BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BE SEMESTER: VII
BRANCH: CS/IT SESSION: MO/2022

SUBJECT: CS429 INFORMATION AND CODING THEORY

TIME: 2 HOURS FULL MARKS: 25

INSTRUCTIONS:

- 1. The total marks of the questions are 25.
- 2. Candidates attempt for all 25 marks.
- 3. Before attempting the question paper, be sure that you have got the correct question paper.
- 4. The missing data, if any, may be assumed suitably.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1 Q1		Explain the importance of measuring entropy in context of Information theory. Find self-information of each of the following symbols. Also, calculate total information and entropy of the set. Source alphabet whose letters have the following probabilities.	[2] [3]	CO CO-1	BL Understand Apply
		A B C D			
		1/4 1/8 1/2 1/8			
Q2	(a)	Define Discrete Memoryless Channel. Why source coding is often	[2]	CO-1	Understand
Q2	(b)	called as noiseless coding? Suppose we send words along a symmetric binary channel with symbol error probability (1/3). Can we be able to compute the transition matrix of the channel? If possible, derive that.	[3]	CO-1	Analyse
Q3	(a)	State Kraft's inequality. Apply Kraft's inequality to ascertain if an Instantaneous code can be created with the following codeword lengths {2, 2, 3, 3, 4}.	[2]	CO-5	Analyse
Q3	(b)	Discuss the drawbacks of fixed length coding in comparison to other efficient coding techniques.	[3]	CO-2	Understand
Q4	(a)	Give the logic to generate Huffman code. Point out the merits and demerits of this code.	[2]	CO-2	Understand
Q4	(b)	Justify the statement - "A code C is instantaneous if and only if it is prefix".	[3]	CO-5	Evaluate
Q5 Q5	(a) (b)	How do you decide a channel is symmetric and error free? Suppose you wish to send the result of rolling a fair eight-sided die. Design the most efficient way to encode the message (corresponding to each side). Show the encoded message.	[2] [3]	CO-1 CO-5	Understand Create

::::: 26/09/2022 :::::M