BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (END SEMESTER EXAMINATION MO/SP2022)

SEMESTER : VII
SESSION : MO/2022
SUBJECT: CS429 INFORMATION AND CODING THEORY

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates
Q.1(a) Compare between self-information and entropy . [BL-2:- Understand, CO-1]
Q.1(b) Discuss the properties of entropy function. [BL-1: Remember, CO-1]
Q.1(c) A zero memory source has a source alphabet, $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ with $P=\{0.5,0.3,0.2\}$. Find the entropy of the source. Explain the significance of unit of the entropy. [BL-3: Apply, CO-1]
Q.2(a) Explain the necessary and sufficient conditions for a code to be instantaneous. Give examples.
[BL -2: Understand, CO-2]
Q.2(b) What is the joint entropy $H(X, Y)$, and what would it be if the random variables X and Y were independent? [BL-2: Understand, CO-1]
Q.2(c) Consider a source with 8 alphabets, A to H with respective probabilities: $0.2,0.2,0.18,0.15,0.12$, $0.08,0.05$ and 0.02 . Construct a minimum redundancy code and determine the code efficiency. [BL-2: Apply, CO-3]
Q.3(a) Discuss are the properties to be satisfied by a linear block code.
[BL-2:Understand, CO-3]
Q.3(b) Outline the features of Hamming code. Check whether $(4,7)$ over $F(2)$ is Hamming code or not.
[BL-4:Analyze, CO-1]
Q.3(c) The parity matrix of a $(3,6)$ binary linear block code is given below.

$$
P=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

(i) Find all uncoded messages. (ii) Find generator and parity check matrix. (iii) Find all the coded messages. (iii) Draw the encoder circuit for the given code.
[BL-3: Apply, CO-2]
Q.4(a) Can you claim that every linear block code is a cyclic code too? Justify your answer.
[BL-5: Evaluate, CO-2]
Q.4(b) Let $C=(2,2)$ be a cyclic code over $\mathrm{F}(2)$. Try to detect and correct single-bit error for this code structure.

Comment about the possibility. [BL-6: Create, CO-2]
Q.4(c) Consider the $(4,7)$ cyclic code generated by $g(x)=1+x+x^{3}$. Suppose the message $u=1111$ is to be encoded. Compute the code word in systematic form. [BL-3: Apply, CO-3]
Q.5(a) Differentiate between memory less and memory-based error control techniques.
[BL- 4: Analyze, CO-2]
Q.5(b) Discuss how you can apply the concept of convolutional code in satellite communication.
[BL-6: Create, CO-5]
Q.5(c) Draw a (1, 2, 2) encoder, if the generator polynomials are $g_{1}(x)=1$ and $g_{2}(x)=1+x+x^{2}$ respectively. Also find the code vector for the input $u=1101$ using transform domain approach. Draw the state transition diagram for the given encoder.
[BL-3: Apply, CO-3]

