BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO/2022)

CLASS: BRANCH	BTECH I: CSE/IT	SEMESTER : V SESSION : MO/2022	2	
TIME:	SUBJECT: CS321-SOFT COMPUTING 03 Hours	FULL MARKS: 50		
INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates				
Q.1(a)	Suppose that fuzzy set A is described by $\mu_A(x) = bell(x; a, b, \mu_{\bar{a}} = bell(x; a, -b, c)$	c).Show that the classical	[2]	L2
Q.1(b)	fuzzy complement of A is describe by In a boiler, pressure and temperature are linguistic parameters ranges from 300 to 1000 psi. Nominal temperature limit is 80-10 uses are as follows: "Low" temperature = $[1/80 + 0.8/82 + 0.6/84 + 0.3/86 + 0.2/80]$ "High" pressure = $[0/300 + 0.2/500 + 0.3/600 + 0.5/800 + 0.7/90]$ Find the membership functions: for "Temperature not very low	(CO1) 5. Nominal pressure limit 20°C. The fuzzy linguistic 38 + 0/ 90] 30 + 1 /1000] 7. "Pressure is extremely	[3]	L1
Q.1(c)	high" and "Pressure is fairly low".(CO1)Explain the followingI.I.Convex and non-convex fuzzy setsII.Normal and subnormal fuzzy setsIII.T-norm and T-conorm(CO1)		[5]	L2
Q.2(a) Q.2(b) Q.2(c)	Define the extension principle of fuzzy sets theory. (CO2) Design the FIS for controlling the water level and temperature i models. Assume your own linguistic variable. (CO2) In the field of computer networking there is an imprecise relation use of network communication bandwidth and the latency exp communication. Let X be a fuzzy set of use levels (in terms of per used) and Y be a fuzzy set of latencies (in millisecond) with t	n the boiler using Sugeno ship between the level of erienced in peer-to-peer centage of full bandwidth he following membership	[2] [3] [5]	L1 L6 L1
	<pre>function. X = [0.2/10, 0.5/20, 0.8/40, 1/60, 0.6/80, 0.1/100] Y = [0.3/0.5, 0.6/1, 0.9/1.5,1/4, 0.6/8,0.3/20] (a) Find the Cartesian product represented by the Mamdani re (b) Suppose a second fuzzy set of bandwidth usage given by: X'=[0.3/10, 0.6/20, 0.7/40, 0.9/60,1/80,0.5/100] then fi max-min compositional rule. (CO2)</pre>	lation (R) nd the fuzzy set 'S' using		
Q.3(a)	In case of small population size, how we can ensure that a large provered? $(CO3)$	part of the search space is	[2]	L1
Q.3(b)	Explain genetic operators and fitness function with respect to	evolutionary computing.	[3]	L5
Q.3(c)	Maximize the objective function $f(x) = 2x - x^2 / 16$ on the interval chromosome is fixed as 5-bits and initial population of four chrom 10011,11000}.(CO3)	[0, 31]. The length of the nosomes = {00010, 01001,	[5]	L6
Q.4(a) Q.4(b) Q.4(c)	What is linear separability? (CO4) Explain the Winner-take-all networks with its architecture and wei Differentiate between supervised and unsupervised training. How during supervised training? Explain with example. (CO4)	ght updating rule (CO4) does neural network learn	[2] [3] [5]	L1 L2 L4
Q.5(a) Q.5(b)	Discuss the methods of speed-up in the context of ANN training. (Explain the concept of Adaline with help of neat diagram. (CO5)	CO5)	[2] [3]	L6 L5

Q.5(c) Derive the weight adaptation rule for backpropagation learning scheme for a feedforward [5] L4 neural network with k-input nodes, h-hidden nodes, and O-output nodes. (CO5)