BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (END SEMESTER EXAMINATION MO/2022)

CLASS: BTECH
BRANCH: CSE/IT
SEMESTER : V
SESSION : MO/2022

SUBJECT: CS321-SOFT COMPUTING

TIME: 03 Hours
FULL MARKS: 50

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates
Q.1(a) Suppose that fuzzy set A is described by $\quad \mu_{A}(x)=b e l l(x ; a, b, c)$.Show that the classical [2] L2 fuzzy complement of A is describe by $\mu_{\bar{A}}=\operatorname{bell}(x ; a,-b, c) \quad$ (CO1)
Q.1(b) In a boiler, pressure and temperature are linguistic parameters. Nominal pressure limit ranges from 300 to 1000 psi. Nominal temperature limit is $80-100{ }^{\circ} \mathrm{C}$. The fuzzy linguistic uses are as follows:
"Low" temperature $=[1 / 80+0.8 / 82+0.6 / 84+0.3 / 86+0.2 / 88+0 / 90]$
"High" pressure $=[0 / 300+0.2 / 500+0.3 / 600+0.5 / 800+0.7 / 900+1 / 1000]$
Find the membership functions: for "Temperature not very low", "Pressure is extremely high" and "Pressure is fairly low".
(CO1)
Q.1(c) Explain the following
I. Convex and non-convex fuzzy sets
II. Normal and subnormal fuzzy sets
III. T-norm and T-conorm (CO1)
Q.2(a) Define the extension principle of fuzzy sets theory. (CO2)
[2] L1
Q.2(b) Design the FIS for controlling the water level and temperature in the boiler using Sugeno models. Assume your own linguistic variable. (CO2)
Q.2(c) In the field of computer networking there is an imprecise relationship between the level of use of network communication bandwidth and the latency experienced in peer-to-peer communication. Let X be a fuzzy set of use levels (in terms of percentage of full bandwidth used) and Y be a fuzzy set of latencies (in millisecond) with the following membership function.
$X=[0.2 / 10,0.5 / 20,0.8 / 40,1 / 60,0.6 / 80,0.1 / 100]$
$Y=[0.3 / 0.5,0.6 / 1,0.9 / 1.5,1 / 4,0.6 / 8,0.3 / 20]$
(a) Find the Cartesian product represented by the Mamdani relation (R)
(b) Suppose a second fuzzy set of bandwidth usage given by: X ' $=[0.3 / 10,0.6 / 20,0.7 / 40,0.9 / 60,1 / 80,0.5 / 100]$ then find the fuzzy set ' S ' using max-min compositional rule. (CO2)
Q.3(a) In case of small population size, how we can ensure that a large part of the search space is covered? (CO3)
Q.3(b) Explain genetic operators and fitness function with respect to evolutionary computing. (CO3)
Q.3(c) Maximize the objective function $f(x)=2 x-x^{2} / 16$ on the interval [0,31]. The length of the chromosome is fixed as 5-bits and initial population of four chromosomes $=\{00010,01001$, 10011,11000\}.(CO3)
Q.4(a) What is linear separability? (CO4)
Q.4(b) Explain the Winner-take-all networks with its architecture and weight updating rule (CO4)
[2] L1
Q.4(c) Differentiate between supervised and unsupervised training. How does neural network learn [5] L4
[3] L 2 during supervised training? Explain with example. (CO4)
Q.5(a) Discuss the methods of speed-up in the context of ANN training. (CO5)
[2] L6
Q.5(b) Explain the concept of Adaline with help of neat diagram. (CO5)
[3] L5
Q.5(c) Derive the weight adaptation rule for backpropagation learning scheme for a feedforward [5] L4 neural network with k-input nodes, h -hidden nodes, and O -output nodes. (CO5)
