BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (FND SEMESTER EXAMINATION MO/SP20**)

		(END SEMESTER EXAMINATION MO/SP20)	
CLASS:	BTECH / IMSC		SEMESTER : V
BRANCH:	CSE/IT/IMH		SESSION : MO//2022

SUBJECT: CS310 FORMAL LANGUAGES AND AUTOMATA THEORY

TIME: 03 Hours FULL MARKS: 50

[2]

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all guestions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates
-
- What is an expressive power of automata? Compare different automata in term of expressive power. Q.1(a) [2] [3]
- Q.1(b) Convert the following e-NFA to NFA and convert the resultant NFA to DFA

- Q.1(c) Construct the minimal DFA that accept all strings contain even numbers of a's, b's and c's over $\Sigma = [5]$ {a, b, c}
- Q.2(a) State Arden's Theorem
- Q.2(b) State and explain Pumping Lemma with suitable example [3]
- Q.2(c) Write regular expression for strings contain substring "00" over $\Sigma = \{0, 1\}$ and convert it into [5] corresponding DFA.
- Q.3(a) Define Grammar in the context of formal language. Differentiate recursive and non-recursive [2] grammar with a suitable example.
- Q.3(b) Construct a CFG to generate even and odd length palindrome over the alphabet $\{a, b\}$. [3] Generate CFG for the language $L = \{a^m b^n \mid m > n\}$
- Write down the steps to transform a grammar into Chomskey Normal form and Greibach Normal Form [5] Q.3(c) (GNF)

Find the equivalent grammar in the form of CNF and GNF S→bA|aB $A \rightarrow bAA | aS | a$

- $B \rightarrow aBB|bS|b$
- Q.4(a) Define push down automata. Differentiate non-deterministic and deterministic push down automata [2] with example.
- Q.4(b) Define ambiguous grammar with suitable example. How it differs from unambiguous grammar? [3] [5] Q.4(c) Construct the PDA for the following languages
 - 1. $L = \{a^n b^n | n > 1\}$
 - 2. $L = \{a^n b^m a^m b^n \mid m, n > 0\}$
- Q.5(a) Explain the Post correspondence problem? Find the solution of PCP for following set of strings. [2] X={bbab, ab, baa, a} Y={a, abbb, aa, bb}
- Q.5(b) Construct a Turing machine to add two unary numbers. Numbers will separated by a single blank [3] space. The head of the machine is made to point to a symbol of second number initially. [5]
- Q.5(c) Write short notes on the following
 - Halting Problem in Turing machine
 - P, NP, NP-Complete and NP-hard Problem

:::::22/11/2022:::::M