BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
(END SEMESTER EXAMINATION MO/SP20**)

CLASS:	BTECH / IMSC	SEMESTER : V
BRANCH:	CSE/IT/IMH	SESSION : MO//2022
	SUBJECT: CS310 FORMAL LANGUAGES AND AUTOMATA THEORY	
TIME:	03 Hours	FULL MARKS: 50

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a) What is an expressive power of automata? Compare different automata in term of expressive power.

Q. 1 (b) Convert the following e-NFA to NFA and convert the resultant NFA to DFA

Q.1(c) Construct the minimal DFA that accept all strings contain even numbers of a's, b's and c's over $\Sigma=$ \{a, b, c \}
Q.2(a) State Arden's Theorem
Q.2(b) State and explain Pumping Lemma with suitable example
Q.2(c) Write regular expression for strings contain substring " 00 " over $\Sigma=\{0,1\}$ and convert it into [5] corresponding DFA.
Q.3(a) Define Grammar in the context of formal language. Differentiate recursive and non-recursive grammar with a suitable example.
Q.3(b) Construct a CFG to generate even and odd length palindrome over the alphabet $\{a, b\}$.

Generate CFG for the language $L=\left\{a^{m} b^{n} \| m>n\right\}$
Q.3(c) Write down the steps to transform a grammar into Chomskey Normal form and Greibach Normal Form (GNF)
Find the equivalent grammar in the form of CNF and GNF
$S \rightarrow b A \mid a B$
$A \rightarrow b A A|a S| a$
$B \rightarrow a B B|b S| b$
Q.4(a) Define push down automata. Differentiate non-deterministic and deterministic push down automata with example.
Q.4(b) Define ambiguous grammar with suitable example. How it differs from unambiguous grammar?
Q.4(c) Construct the PDA for the following languages

1. $L=\left\{a^{n} b^{n} \mid n>1\right\}$
2. $L=\left\{a^{n} b^{m} a^{m} b^{n} \mid m, n>0\right\}$
Q.5(a) Explain the Post correspondence problem? Find the solution of PCP for following set of strings. $X=\{b b a b, a b, b a a, a\}$ $Y=\{a, a b b b, a a, b b\}$
Q.5(b) Construct a Turing machine to add two unary numbers. Numbers will separated by a single blank space. The head of the machine is made to point to a symbol of second number initially.
Q.5(c) Write short notes on the following

- Halting Problem in Turing machine
- P, NP, NP-Complete and NP-hard Problem
:::::22/11/2022::::::M

