BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO/SP20**)

CLASS:	B.TECH	SEMESTER : V	
BRANCH:	BT/CP&P/CHEMICAL/CE/EEE/ECE/ME/PIE	SESSION : MO/2022	
TIME:	SUBJECT: CS275 FUNDAMENTALS OF DATA STRUC 03 Hours	TURES FULL MARKS: 50	
INSTRUC 1. The q 2. Attem 3. The m 4. Tables	TIONS: uestion paper contains 5 questions each of 10 marks and total 50 n pt all questions. iissing data, if any, may be assumed suitably. s/Data handbook/Graph paper etc., if applicable, will be supplied to	narks. o the candidates	
Q.1(a)	Define a <i>non linear</i> data structure.	st.	[2]
Q.1(b)	Illustrate the <i>insertion</i> and <i>deletion</i> at the end of a circular linked lis		[3]
Q.1(c)	Solve the recurrence relation: $T(n) = T(n-2) + 2n^2 + 1$		[5]
Q.2(a)	Demonstrate the <i>Push</i> and <i>Pop</i> operations	ueues	[2]
Q.2(b)	State the difference between <i>deque</i> and <i>dequeue</i> .		[3]
Q.2(c)	Design an algorithm to implement a stack using <i>minimal</i> number of q		[5]

Q.3(a) Compose two examples where Depth First Search and Breadth First Search are more suitable than [2] the other. Q.3(b) 5 (3]

Illustrate the above undirected graph using adjacency matrix and adjacency list

- Q.3(c) Find the minimum spanning tree step by step of the above graph by any appropriate algorithm [5] having time complexity of O (E log V).
- Q.4(a) Describe the need of a height balanced binary search tree. Name a few height balanced search [2] trees.
- Q.4(b)

[3]

Demonstrate and explain topological sort over the above graph by Kahn's algorithm.

Q.4(c)

Find all pair shortest paths by any appropriate algorithm having time complexity $\leq O(V^3)$

Q.5(a) Given the array 31, 12, 25, 8, 32, 17, 50, 110, 31 (sort it in *increasing* order for all three questions [2] as below, Don't need to write the algorithm - only step by step output)

Derive the output of *bubble* sort or *selection* sort set by step.

- Q.5(b) Derive the output of *heap* sort step by step.
- [3] [2] Q.5(c) Derive the output of *quick* sort step by step taking pivot as the *first* element.
- Q.5(d) Describe a condition with an example where quick sort have time complexity of $O(n^2)$

:::::25/11/2022:::::M

[5]

[3]