BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
(END SEMESTER EXAMINATION MO/SP20**)

CLASS:	B.TECH	SEMESTER : V
BRANCH:	BT/CP\&P/CHEMICAL/CE/EEE/ECE/ME/PIE	SESSION : MO/2022
TIME:	03 Hours	SUBJECT: CS275 FUNDAMENTALS OF DATA STRUCTURES

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates
Q.1(a) Define a non linear data structure.
Q.1(b) Illustrate the insertion and deletion at the end of a circular linked list.
Q.1(c) Solve the recurrence relation: $T(n)=T(n-2)+2 n^{2}+1$
Q.2(a) Demonstrate the Push and Pop operations
Q.2(b) State the difference between deque and dequeue.
Q.2(c) Design an algorithm to implement a stack using minimal number of queues
Q.3(a) Compose two examples where Depth First Search and Breadth First Search are more suitable than the other.
Q.3(b)

Illustrate the above undirected graph using adjacency matrix and adjacency list
Q.3(c) Find the minimum spanning tree step by step of the above graph by any appropriate algorithm having time complexity of $O(E \log V)$.
Q.4(a) Describe the need of a height balanced binary search tree. Name a few height balanced search trees.
Q.4(b)

Demonstrate and explain topological sort over the above graph by Kahn's algorithm.
Q.4(c)

Find all pair shortest paths by any appropriate algorithm having time complexity $<=O\left(V^{3}\right)$
Q.5(a) Given the array 31, 12, 25, 8, 32, 17, 50, 110, 31 (sort it in increasing order for all three questions as below, Don't need to write the algorithm - only step by step output)

Derive the output of bubble sort or selection sort set by step.
Q.5(b) Derive the output of heap sort step by step.
Q.5(c) Derive the output of quick sort step by step taking pivot as the first element.
[3]
Q.5(d) Describe a condition with an example where quick sort have time complexity of $O\left(n^{2}\right)$

