BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: B.TECH SEMESTER: V
BRANCH: ALL SESSION: MO/2022

SUBJECT: CS275 FUNDAMENTALS OF DATA STRUCTURES

TIME: 2 HOURS FULL MARKS: 25

INSTRUCTIONS:

- 1. The total marks of the questions are 25.
- 2. Candidates attempt for all 25 marks.
- 3. Before attempting the question paper, be sure that you have got the correct question paper.
- 4. The missing data, if any, may be assumed suitably.
- 5. Tables/Data handbook/Graph paper etc. to be supplied to the candidates in the examination hall.

		What are the differences between linear array and linked list What is a doubly linked list? How can it be memory efficient?	[2] [3]	CO 1 3	BL 2 4
Q2	(a)	int i, j, k = 0; for (i = n / 2; i <= n; i++) { for (j = 2; j <= n; j = j * 2) {	[2]	1	4
Q2	(b)	<pre>} } What is the time complexity of this code? Solve the recurrence relation T[n]=n^0.5T[n/6]</pre>	[3]	4	4
Q3	(a)	How a prefix expression can be converted to a postfix expression. Explain with	[2]	3	5
Q3	(b)	a pseudocode. Given a linked list and a value x , write an algorithm to partition it such that all nodes less than x come before nodes greater than or equal to x .	[3]	3	5
		How to implement a queue using a minimal number of stacks. Consider a rat in a maze problem with this matrix	[2] [3]	3 4	5 4
		{1, 1, 1, 1, 1}, {1, 0, 1, 0, 0}, {1, 0, 1, 1, 1}, {1, 0, 0, 1, 1} Rat is at (0,0) and has to reach (3,4). The rat can move to the down and right in this order. Explain the rats movement using a stack. (0 -> can not move. 1 -> can move)			
		In a circular queue, explain how the rear and front changes? What kind of ADT can be suitable for making a music player of a playlist (consider that jumping to random locations is not allowed). Write a pseudocode for any insertion possible.	[2] [3]	2 5	2 6

::::: 30/09/2022 :::::M