BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	BTECH SEMESTI CS/IT SESSION		ER:III I:MO/2022		
TIME:	SUBJECT: CS235 COMPUTER ORGANIZATION AND ARCHITEC 03 Hours FL	ITECTURE FULL MARKS: 50			
INSTRUC 1. The qu 2. Attem 3. The m 4. Tables	TIONS: uestion paper contains 5 questions each of 10 marks and total 50 marks. pt all questions. issing data, if any, may be assumed suitably. s/Data handbook/Graph paper etc., if applicable, will be supplied to the ca	andidate	s		
Q.1(a)	Explain the design principle of accumulator-based CPU. Also state the drawl	backs	[2]	CO 1	BL 2
Q.1(b)	Consider the following representation of a number in IEEE754 Single Precision floating point format with a bias of 127.	ิท	[3]	3	3
	S: 1 E: 10000001 F: 1111000000000000000000				
	Here S, E, F denote Sign , Exponent and Fraction components of the floating point representation.	3			
	Find the decimal value corresponding to the above representation.				
Q.1(c)	Using Booths multiplication algorithm show the multiplication of $(-5)X(7)$		[5]	3	5
Q.2(a) Q.2(b)	Define addressing mode. Write the zero, one, two and three address instruction for the following expression:		[2] [3]	1 2	1 5
	X = (A-B)/(E+F)				
Q.2(c)	Explain Direct and Indirect addressing mode with an example.		[5]	2	5
Q.3(a) Q.3(b) Q.3(c)	Differentiate between RISC and CISC. Write the microoperations to be performed for an instruction MOV R_1 , R_2 . Explain different pipeline hazards with their solutions.		[2] [3] [5]	3 3 4	3 5 5
Q.4(a) Q.4(b) Q.4(c)	What is the need to implement memory as a hierarchy? Distinguish between SRAM and DRAM What is meant by Cache Mapping? In how many ways mapping m implemented? Explain Direct Cache Mapping technique with example.	ay be	[2] [3] [5]	5 5 1,3	4 3 1,5
Q.5(a) Q.5(b)	Describe the various Bus Arbitration mechanisms. Discuss Flynn's Taxanomy.		[5] [5]	5 1	5 5

:::::24/11/2022::::E