BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: IMSC BRANCH: MATHS & COMP. SUBJECT: CS206 DESIGN AND ANALYSIS OF ALGORITHMS SEMESTER: V SESSION: MO/2022

SUBJECT: CS206 DESIGN AND ANALYSIS OF ALGORITHMS					
TIA	NE:	2 HOURS	FULL MA	RKS:	25
INS 1. 2. (3. 4. 5.	TRUC The t Candi Befor The n Table	CTIONS: otal marks of the questions are 25. idates attempt for all 25 marks. re attempting the question paper, be sure that you have got the correct ques nissing data, if any, may be assumed suitably. es/Data hand book/Graph paper etc. to be supplied to the candidates in the e	tion pap	er. tion ha	all.
Q1 Q1	(a) (b)	Define time complexity and space complexity. Compare the orders of growth of $n!$ and 2^n in terms of asymptotic notations.	[2] [3]	CO 1 1	BL 1 2
Q2 Q2	(a) (b)	Discuss the relevance of Average Case Complexity analysis. Solve the recurrence: $T(n) = 3T(n/4) + O(n^2)$ using recursion tree method. The various terms have their usual meanings. The base condition may be assumed suitably.	[2] I. [3] e	1 1	2 3
Q3	(a)	Derive best case time complexity of standard quick sort algorithm. Specify the	e [2]	1	2
Q3	(b)	Quicksort is a sorting algorithm whose worst-case running time is $O(n^2)$ on a input array of n numbers. In spite of this slow worst-case running time quicksort is often the best practical choice for sorting. Justify.	n [3] :,	3	2
Q4	(a)	Specify recurrence relation and hence derive average case time complexity of standard merge sort algorithm	of [2]	1	2
Q4	(b)	Discuss an in-place version of <i>merge sort</i> algorithm. Discuss time complexit of your algorithm.	y [3]	4, 5	6
Q5	(a)	Design an algorithm to convert a binary number to a decimal integer. Mentio	n [2]	4	6
Q5	(b)	V Pan has discovered a divide-and-conquer matrix multiplication algorithm that is based on multiplying two 70-by-70 matrices using 143,64 multiplications. Find the asymptotic efficiency of Pan's algorithm an compare it with that of Strassen's algorithm.	n [3] 0 d	5	5

:::::: 01/10/2022 :::::M