BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

(END SEMESTER EXAMINATION MO-2022)

CLASS:	IMSC	SEMESTER: V
BRANCH:	MATHS \& COMP.	SESSION: MO-2022
TIME:	03 Hours	

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates
Q.1(a) Define average-case time complexity in algorithm analysis. [BT-1] [CO-1]
Q.1(b) Prove or disprove: $10 n^{2}+9=0(n)$. [BT-3] [CO-1]
Q. 1 (c) Given the recurrence $F(n)=F(n-1)+F(n-2)$ for $n>1$ and two initial conditions $F(0)=0, F(1)=1$. Derive an explicit formula for obtaining $n^{\text {th }}$ Fibonacci number. [BT-3] [CO-1]
Q.2(a) Specify the general nature of problems where divide and conquer approach is applicable. [BT-1] [CO2]
Q.2(b) Give an in-place variant of standard merge sort algorithm. [BT-6] [CO-4]
Q.2(c) Derive the various time requirements of your variant (in question above). [BT-5] [CO-5]
Q.3(a) Specify the key characteristics of problems which can be solved using dynamic programming approach. [BT-1] [CO-1]
Q.3(b) Discuss, how the principle of optimality holds for the longest common subsequence problem. [BT-2] [3] [CO-2]
Q.3(c) Compare the approaches Memoization and Tabulation using a suitable example. [BT-4] [CO-3]
Q.4(a) Specify the nature of problems solvable through greedy approach. [BT-1] [CO-2]
Q.4(b) Give a backtracking solution to 4-queen problem. You need not specify algorithm. [BT-2] [CO-3]
Q.4(c) Improve the original Dijkstra's algorithm for finding the shortest paths such that apart from giving length of shortest paths only it yields corresponding paths as well. [BT-6] [CO-4]
Q.5(a) Define the classes P and NP. [BT-1] [CO-1]
Q.5(b) How the classes NPC and NP-Hard are related to each other. Express through a suitable Venn diagram. [BT-2] [CO-1]
Q.5(c) Propose an approximation algorithm for Travelling Salesperson Problem. Clearly specify the worstcase time complexity of your approach. [BT-6] [CO-4; CO-5]
