BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: B. TECH BRANCH: CHEMICAL/ CHEMICAL (P&P)

1. The total marks of the questions are 25. 2. Candidates attempt for all 25 marks.

4. The missing data, if any, may be assumed suitably.

SUBJECT: CL424 MICROFLUIDICS

3. Before attempting the question paper, be sure that you have got the correct question paper.

5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. _____

TIME: 2 HOURS

SEMESTER: VII SESSION: MO/2022

Q1 Q1	(a) (b)	Explain point value in continuum fluid mechanics. Write short notes on microelectromechanical systems (MEMS).	[2] [3]	CO CO1 CO1	BL L1 L2
Q2		Derive Navier-Stoke equation from Navier's equation of equilibrium.	[5]	C01	L4
Q3 Q3	(a) (b)	Define: Contact angle, surface tension. Derive the Young-Laplace equation	[2] [3]	CO1 CO2	L1 L4
Q4 Q4	(a) (b)	How will you apply Knudsen number to characterize fluid flow? Show that the rise in capillary height is inversely proportional to the radius of capillary tube.	[2] [3]	CO1 CO2	L2 L3
Q5	(a)	How inertia force affects the dynamics of surface driven flow? Mention the	[2]	CO2	L2
Q5	(b)	Mention the different methods to control surface tension and capillary force in a microfluidic channel.	[3]	CO2	L3

:::::: 26/09/2022 :::::M

FULL MARKS: 25

INSTRUCTIONS: