BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH			MESTER : VII SSION : MO/2022		
TIME:	SUBJECT: CL424 MICROFLUIDICS 3:00 Hours F	FULL MARKS: 50			
 Atten The n Befor 	TIONS: Juestion paper contains 5 questions each of 10 marks and total 50 marks. Inpt all questions. Inissing data, if any, may be assumed suitably. e attempting the question paper, be sure that you have got the correct question pa s/Data hand book/Graph paper etc. to be supplied to the candidates in the examina	tion ha			
Q.1(a) Q.1(b) Q.1(c)	Explain point value in continuum fluid mechanics Describe Couette flow and Poiseuille flow. Summarize the different theories proposed for different length scale base on molecul number density.	[2] [3] ar [5]	CO CO1 CO1 CO1	BL L1 L1 L2	
Q.2(a) Q.2(b)	Describe with example: electrocapillary effect, thermocapillary effect. Derive Young's equation from interfacial energy minimization principle.	[4] [6]	CO2 CO2	L1 L4	
Q.3(a) Q.3(b) Q.3(c)	Summarize the Mechanisms of DNA separation. Derive the expression of Electrophoretic mobility due to the movement of charge particles in an insulating fluid, submitted to an electric field. Describe Electro-osmosis, Electrophoresis, Streaming Potential, Sedimentation Potential, and Dielectrophoresis.		CO3 CO3 CO3	L2 L4 L1	
Q.4(a) Q.4(b)	Write down the application of Polydimethylsiloxane in microcasting. Explain Czocharalski method (CZ-method) with a neat sketch.	[5] [5]	CO4 CO4	L4 L3	
Q.5(a) Q.5(b)	Compare isothermal and nonisothermal flow sensor. Give example. Write down the working principle and application of nonmechanical micropump Electrohydrodynamic Pumps, Electrokinetic Pumps, Surface Tension Driven Pump Magnetohydrodynamic (MHD) Pumps.		CO5 CO5	L2 L3	

:::::21/11/2022:::::M