BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO/2022)

CLASS: BRANCI	B.TECH I: CHEM. ENGG / CP&P	SEMESTER: VII SESSION: MO/2022	
TIME:	SUBJECT: CL412 COLLOID AND INTERFACIAL SCII 03 Hours	ENCE FULL MARKS: 50	
INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates			
Q.1(a) Q.1(b)	A spherical particle of 1cm in diameter is broken uniformly into a large such that the diameter of each of the new particle is $1 \times 10-7$ m. Calcunew particle.	late the total surface area of	[2] [4]
Q.1(c)	Give classification of biosurfactants. Illustrate the advantages and limitations of biosurfactants.		[4]
Q.2(a) Q.2(b) Q.2(c)	Define young Laplace equation. Calculate surface tension of ethyl acetate at 293K having the paracho $^{1/2}$ mol ⁻¹ . (Given density 0.9g/cc) Sketch II Vs A (surface pressure Vs molecular area) of stearic acid in Lan	-	[2] [4] [4]
Q.3(a) Q.3(b) Q.3(c)	Define is Tate's law. The critical coagulation concentration for NaCl, MgCl ₂ , and AlCl ₃ for neare 60mol/m ³ and 0.09mol/m ³ respectively. Verify Schulze Hardy rule. Illustrate the advantages and disadvantages of Wilhelmy and du Nouy rir	gatively charged As ₂ S ₃ colloids	[2] [4] [4]
Q.4(a) Q.4(b) Q.4(c)	Define Winsor classification of surfactants. Discuss the main differences of emulsion and microemulsions. Estimate the height of water inside a capillary tube of 0.75 mm radius. zero contact angle.	「ake: γ= 72 mN/m and assume	[2] [4] [4]
Q.5(a) Q.5(b) Q.5(c)	Explain the main features of Gemini surfactant. Calculate the Hamaker constant for the fused quartz (1) -air (2)-tetra your results with the experimental value of -0.5×10^{-20} J. $A_{H}^{1,1}$ = 6.5×10^{-20} J. Derive Poisson Boltzman equation for colloidal system.		[2] [4] [4]

:::::23/11/2022:::::M