BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

(END SEMESTER EXAMINATION MO/2022)

CLASS:	B.TECH	SEMESTER: VII
BRANCH:	CHEM. ENGG / CP\&P	SESSION: MO/2022
		SUBJECT: CL412 COLLOID AND INTERFACIAL SCIENCE
TIME:	03 Hours	

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates
Q.1(a) Define Stokes Einstein equation.
Q.1(b) A spherical particle of 1 cm in diameter is broken uniformly into a large number of spherical particles such that the diameter of each of the new particle is $1 \times 10-7 \mathrm{~m}$. Calculate the total surface area of new particle.
Q. 1 (c) Give classification of biosurfactants. Illustrate the advantages and limitations of biosurfactants.
Q.2(a) Define young Laplace equation.
Q.2(b) Calculate surface tension of ethyl acetate at 293 K having the parachor value $38.196 \times 10^{-6} \mathrm{~kg}^{1 / 4} \mathrm{~m}^{3} \mathrm{~s}$ ${ }^{1 / 2} \mathrm{~mol}^{-1}$. (Given density $0.9 \mathrm{~g} / \mathrm{cc}$)
Q.2(c) Sketch Π Vs A (surface pressure Vs molecular area) of stearic acid in Langmuir-Blodgett film balance.
Q.3(a) Define is Tate's law.
Q.3(b) The critical coagulation concentration for $\mathrm{NaCl}, \mathrm{MgCl}_{2}$, and AlCl_{3} for negatively charged $\mathrm{As}_{2} \mathrm{~S}_{3}$ colloids are $60 \mathrm{~mol} / \mathrm{m}^{3}$ and $0.09 \mathrm{~mol} / \mathrm{m}^{3}$ respectively. Verify Schulze Hardy rule.
Q.3(c) Illustrate the advantages and disadvantages of Wilhelmy and du Nouy ring method.
Q.4(a) Define Winsor classification of surfactants.
Q.4(b) Discuss the main differences of emulsion and microemulsions.
Q.4(c) Estimate the height of water inside a capillary tube of 0.75 mm radius. Take: $\gamma=72 \mathrm{mN} / \mathrm{m}$ and assume zero contact angle.
Q.5(a) Explain the main features of Gemini surfactant.
Q.5(b) Calculate the Hamaker constant for the fused quartz (1) -air (2)-tetradecane (3) system. Compare your results with the experimental value of $-0.5 \times 10^{-20} \mathrm{~J}$. $\mathrm{A}_{H}{ }^{1,1}=6.5 \times 10^{-20} \quad \mathrm{~A}_{H}{ }^{2,2}=0 \mathrm{~J} A_{H}{ }^{3,3}=6.5 \times 10^{-20}$
Q.5(c) Derive Poisson Boltzman equation for colloidal system.
