BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO/2022) CLASS: BTECH SEMESTER : V BRANCH: CHEMICAL/P&P SESSION : MO22 SUBJECT: CL302 CHEMICAL REACTION ENGINEERING-I TIME: 03 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.

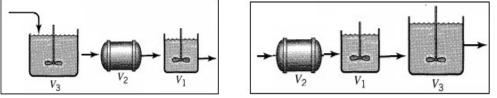
4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

.....

Q.1(a) For the given reaction

 $H_2 + Br_2 \rightarrow 2HBr$

the rate is given by


 $r_{\rm HBr} = \frac{k_1 [H_2] [Br_2]^{1/2}}{k_2 + [HBr] / [Br_2]}$

Predict the molecularity of the reaction?

- Q.1(b) What is activation energy? Plot energy vs reaction coordinate for exothermic and endothermic [4] CO1 reaction.
 Q.1(c) Decomposition of phosphine follows the following stoichiometry: [4] CO1
- Q.1(c) Decomposition of phosphine follows the following stoichiometry: [4] $4PH_3 \rightarrow P_4 + 6H_2$. If at an instant rate of the decomposition is 2×10^{-4} kmol/m³.s, calculate the rate of formation of phosphorus and hydrogen.
- Q.2(a) Why is recycle reactor best for autocatalytic reaction?
- Q.2(b) A first order liquid phase reaction is planned to carry out in two equal volume CSTRs. The [3] CO3 reactors are connected in series and in parallel in two different cases. Compare the final conversion for two arrangements. Data: $F_{A0} = 10 \text{ kmol/s}$, $k = 1 \text{ s}^{-1}$, $C_{A0} = 1 \text{ kmol/m}^3$, $V_{CSTR} = 1 \text{ m}^3$.
- Q.2(c) A liquid phase reaction $A \rightarrow P$ is carried out in a batch reactor. The initial feed concentration [5] CO3 is 1 kmol/m³. Find the order of the reaction and rate constant by using differential method. The kinetic data is given in the following table:

Time(s)	0	30	60	90	120	150	180	600
Conc. of A,	1	0.74	0.55	0.42	0.29	0.24	0.16	2.5×10 ⁻³
kmol/m³								

- Q.3(a) Write down the general mole balance equation for batch and plug flow reactors. [2]
 Q.3(b) Which combination from the following figure should be preferred to achieve highest [3]
- conversion for 2nd order and first order reactions? Explain graphically. Here V1<V2<V3

- Q.3(c) The 2nd order gas phase reaction $CH_3CHO \rightarrow CH_4 + CO$ is being carried out in a PFR at 520°C [5] CO2 and 1 atm. pressure. The initial feed rate of acetaldehyde is 0.1 kg/s and the rate constant is 0.43 m³/kmol.s. What will be the volume of reactor for 35% decomposition reaction.
- Q.4(a) In order to study temperature dependence on rate constant of a first order reaction the [2] CO4 following data is obtained from experiment. Calculate activation energy, and frequency factor of the reaction rate constant based on Arrhenius rate expression. R = 8.314 J/mol.K

Temp (ºC)	300	310	320	330	335
k (s ⁻¹⁾	0.000195	0.000886	0.00366	0.0139	0.0262

[2] CO1

CO3

CO3

CO2

[2]

- Q.4(b) Draw a suitable schematic for a non-isothermal batch reactor with wall heat transfer. Write [3] CO4 mass and energy balance equation and derive an expression for maximum adiabatic temperature change in the reactor.
- Q.4(c) A liquid phase first order reversible reaction $A \leftrightarrow B$ takes place in a plug flow reactor. The [5] CO4 feed enters the reactor at 30° C at a rate of $F_{A0} = 0.1$ kmol/min. The feed composition is $C_{A0}=1.0$ kmol/m³. The reaction is exothermic and maximum allowable reaction temperature is 90° C. The following table provides optimum temperature progression and corresponding optimum rate data at different temperatures in the reactor. Calculate volume of the reactor for 80% conversion.

X _{Ae}	0.81	0.77	0.68	0.6	0.55	0.52	0.4	0.29	0.23	0.19	0.18	0.12
1/-r _A	100	50	25	16	11.5	10	5	2.5	1.67	1.25	1.0	0.5
T(⁰ C)	35	41	48	52	55	58	64	77	85	90	92	104

- Q.5(a) Schematically show different type of situations which cause the non-ideality in a reactor. [2] CO5 What is meant by RTD in a reactor.
- Q.5(b) Explain with diagram C-curve for pulse input in a tubular reactor. Mathematically show that [3] CO5 the area under E-curve is unity.
- Q.5(c) Name different models applicable for real CSTR and tubular reactor. What is the significance [5] CO5 of dispersion number.

From the time versus tracer concentration data in the reactor effluent stream, calculate fractional conversion for a first order chemical reaction whose rate constant is 5×10^{-2} sec⁻¹ employing segregated flow model.

Time(s)	0	10	20	30	40	50	60	70	80	90	100	110	120
C(kmol/L)	0	0.1	0.3	0.6	0.7	0.65	0.6	0.4	0.1	0.08	0.04	0.02	0.00

:::::21/11/2022 M:::::