BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: B.TECH. BRANCH: CHEM/P&P

SUBJECT: CL302 CHEMICAL REACTION ENGG. - I

TIME: 2 HOURS

SESSION: MO/2022

FULL MARKS: 25

SEMESTER: V

INSTRUCTIONS:

- 1. The total marks of the questions are 25.
- 2. Candidates attempt for all 25 marks.
- 3. Before attempting the question paper, be sure that you have got the correct question paper.
- 4. The missing data, if any, may be assumed suitably.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1		The aqueous phase reaction $A \rightarrow 2R$ proceeds as follows:									[5]	CO 3	BL 3	
		time, sec	780	2080		354	3540		7200					
		X _A , %	11.2	25.	7	36.	7	55.2						
		Calculate the rate constant and order of the reaction by using integral method.												
		Also calculate the time required for 50% conversion. Assume initial												
	concentration is 0.05 mol/liter.													
Q2	(a)	In a liquid-phase chemical reaction, the concentration of the limiting reactant									[2]	1	3	
		varies with time as follows:												
		Concentration (mol/L)		67	45	32	24	20	18	17	16			
		Time, min	0	2	4	6	8	10	12	14	16			
		Calculate the rate of the reaction at 4 minute.												
Q2	(b)	For a reaction $A \rightarrow P$ whose rate constant is expressed in unit of kmol/m ³ .s. Calculate the rate constant if 80% conversion is obtained in 1 hr. Also calculate time required for 90% conversion and conversion after 30 min of reaction started.										[3]	1	3
Q3	(a)	Calculate the fractional volume change for the following reactions 2A + 20% Inerts \rightarrow 3P + Q+ Inerts A + 2B \rightarrow 2P + 3Q										[3]	2	2
Q3	(b)	Show the examples of (i) unimolecular, (ii) bimolecular reactions										[2]	1	2
Q4		The following gas phase elementary reaction $2A \rightarrow 3P + 2Q$ is carried out in a constant pressure batch reactor. The rate constant is 0.06 m ³ kmol ⁻¹ .s ⁻¹ and initial concentration is 0.09 kmol/m ³ . Calculate the time required for 80% conversion										[5]	3	3
Q5		The following X_A - r_A (mol/m ³ .) If the initial and PFR requ	0 .s) 0.45 molar flow	0.1 0.37 / rate is	0.2 0.30 s 0.4 m	0) 0 iol/s th	.4 .195 nen con	0.6 0.113	0.7	0 79 0	.8 .05	[5]	5	4

:::::: 26/09/2022 :::::M