BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS BRAN			SEMESTER: III SESSION: MO/2022	
SUBJECT: CL219 HEAT TRANSFER OPERATION				
TIME:	2 HOURS	FULL MA	RKS: 2	25
 INSTRUCTIONS: 1. The total marks of the questions are 25. 2. Candidates attempt for all 25 marks. 3. Before attempting the question paper, be sure that you have got the correct question paper. 4. The missing data, if any, may be assumed suitably. 5. Tables/Data handbook/Graph paper etc. to be supplied to the candidates in the examination hall. 				
Q1 (a)	What is critical thickness of insulation? What is the difference between and Nusselt number?	Biot number [2	CO 2] 1	BL 2
Q1 (b)	A steam pipe of 10 cm ID and 11 cm OD is covered with an insulating s 1 W/mK. The steam temperature is 200 °C and ambient temperature is convective heat transfer coefficient between insulating surface and air find the critical radius of insulation for this value of r_c . Calculate the m of pipe and the outer surface temperature. Neglect the resistance material.	5 20 °C. If the r is 8 W/m ² K, heat loss per	3] 2	4
	Discuss Grashof number and Rayleigh's number in natural convection pro A mild steel tank of wall thickness 10 mm contains water at 90 °C. conductivity of mild steel is 50 W/m °C, and the heat transfer coefficient and outside of the tank area are 2800 and 11 W/m ² °C, respect atmospheric temperature is 20 °C, calculate (Assumption - no heat loss from the top water surface) (i) The rate of heat loss per m ² of the tank surface area. (ii) The temperature of the outside surface tank.	The thermal [3 ent for inside	2] 1 3] 2	1 4
Q3 (a)	What is the difference between the black body, grey body and non-	grey body in [2	2] 1	2
Q3 (b)	terms of emissivity? An aluminum sphere mass of 5.5 kg and initially at a temperature suddenly immersed in a fluid at 15 °C with heat transfer co-efficient Estimate the time required to cool the aluminum to 95 °C for alumin 2700 kg/m ³ , c = 900 J /kg K, k = 205 W/m.k.	58 W/m ² K.	3] 2	5
Q4 (a)	In forced convection, Nusselt number is a function of which dimension	onless groups [2	2] 1	2
Q4 (b)	and give the significance of those dimensionless groups. When 0.6 kg of water per minute is passed through a tube of 2 cm diffound to be heated from 20 °C to 60 °C. the heating is achieved b steam on the surface of the tube and subsequently the surface temper tube is maintained at 90 °C. Determine the length of the tube required eveloped flow. Given: At bulk mean temperature properties of water, $\rho = 995$ kg/m x10-6 m ² /s, Pr = 4.340, K = 0.628 W/m. K, Cp = 4178J/kg. K, for lamin 3.66 & for turbulent flow Nu = 120	y condensing rature of the ired for fully n^3 , v = 0.657	3] 2	5
Q5 (a)	Suppose there is a grey surface at a temperature "T" K. It receives a term flux of "G" W/m^2 . If its emissivity, reflectivity, and transmissivity are respectively, what will be the total radiative flux leaving the surface.		2] 3	3
Q5 (b)	Consider the flow of a gas with density 1 kg/m ³ , viscosity 1.5 x 1 specific heat $C_p = 846$ J/kg. K and K = 0.01665 W/m. K, in a pipe of 0.01 m and length L =1 m and assume the viscosity does not temperature. The Nusselt number for a pipe with (L/D) ratio greater Reynolds number greater than 20000 is given by Nu = 0.026 Re ^{0.8} Pr ^{1/3} . While the Nusselt number for a laminar flow for Reynolds number le and (Re Pr D/L) < 10 is Nu = 1.86 [Re Pr (D/L)] ^{1/3} . If the gas flows throw with an average velocity of 0.1 m/s, find the value of heat transfer coercosed of the second sec	diameter D = change with than 10 and rss than 2100 pugh the pipe	3] 2	4

:::::30/09/2022:::::M