SEMESTER : III
SESSION : MO/2022

SUBJECT: CL219 HEAT TRANSFER OPERATION
TIME: $\quad 3: 00$ Hours
FULL MARKS: 50

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Abstract

Q1 (a) What is a lumped system? When can the unsteady temperature in a spatial body be considered uniform?

Q1 (b) What would be your recommendation if you find that the value of critical insulation radius is greater than the outer radius of the pipe?
Q1 (c) Explain why the temperature boundary layer grows much more rapidly than the velocity boundary layer in liquid metals
Q1 (d) A 12 cm diameter long bar initially at a uniform temperature of $40^{\circ} \mathrm{C}$ is placed in a

Marks	CO	BL
$[1.5+1.5]$	1	2
$[1]$	1	4
$[2]$	3	4
$[4]$	2	5

(a) How is natural convection different from forced convection?

Q2 (b) Write note on Reynolds analogy.
Q2 (c) What is the physical significance of Prandtl number and how does it affect the relationship between the thickness of hydrodynamic and thermal boundary layers?
Q2 (d) Water at the rate of $1 \mathrm{~kg} / \mathrm{s}$ is forced through a tube with a $2.5-\mathrm{cm} \mathrm{ID}$. The inlet

$[1.5]$	1	2
$[2.5]$	1	1
$[2]$	3	2
$[4]$	2	5

Q3 (a) Define black body and grey body.
Q3 (b) Explain any one law of radiation.
(c) A hemispherical furnace of 1 m radius has the inner surface (emissivity $=1$) of its roof maintained at 800 K , while its floor (emissivity $=0.5$) is kept at 600 K . Find the net radiative heat transfer in KW from the roof to the floor.
Q3 (d) Consider 2 large parallel plates, one at $727^{\circ} \mathrm{C}$ with emissivity $=0.8$ and the other at $227^{\circ} \mathrm{C}$ with emissivity $=0.4$. An aluminium radiation shield with an emissivity $=0.05$ on both sides is placed between the plates. Calculate \% reduction in heat transfer rate between the plates because of the shield.

Q4 (a) Differentiate between film type and drop-wise condensation.
(b) What are the assumptions used for condensation to determine film thickness.

Q4 (c) Explain the pool boiling curve for heat transfer.

$[2]$	1	2
$[2]$	1	1
$[3]$	3	4
$[3]$	2	5

$[1]$	4	2
$[2]$	4	2
$[3]$	4	1

Q4 (d) An aqueous solution of a solute is concentrated from 5% to 20% (mass basis) in a single effect short tube evaporator. The feed enters the evaporator at a rate of 10 $\mathrm{kg} / \mathrm{sec}$ and at a temperature of 300 K . Steam is available at a saturation, pressure of 1.3 bar. The pressure in the vapour space of the evaporator is 0.13 bar and the corresponding saturation temperature of steam is 320 K . If the overall heat transfer co-efficient is $5000 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, Calculate 1) Steam economy, 2) Heat Transfer surface area.
Data: \quad Enthalpy $(\mathrm{KJ} / \mathrm{Kg}) \quad$ Heat of vaporization $(\mathrm{KJ} / \mathrm{Kg})$
Saturated steam ---- 2000
(1.3 bar, 380 K)

Saturated steam 2200
(0.13 bar, 320 K)

Feed (5\%, 300 K)
Concentrated liquor
(20\%, 325 K)
Boiling point elevation is 5 K
Q5 (a) When is the LMTD method most applicable to heat-exchanger calculations?
Q5 (b) What are purposes of different pitches and baffles inside heat exchangers?
Q5 (c) A counter flow double-pipe heat exchanger is to be used to heat $0.7 \mathrm{~kg} / \mathrm{s}$ of water from 35 to $90{ }^{\circ} \mathrm{C}$ with an oil flow of $0.95 \mathrm{~kg} / \mathrm{s}$. The oil has a specific heat of 2.1 $\mathrm{kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ and enters the heat exchanger at a temperature of $175^{\circ} \mathrm{C}$. The overall heattransfer coefficient is $425 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$. Calculate the area of the heat exchanger and the effectiveness.
Q5 (d) A feedwater heater uses a shell-and-tube exchanger with condensing steam in one shell pass at $120{ }^{\circ} \mathrm{C}$. Water enters the tubes at $30 \circ \mathrm{C}$ and makes four passes to produce an overall U value of $2000 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$. Calculate the area of the exchanger for $2.5-\mathrm{kg} / \mathrm{s}$ mass flow of the water, with a water exit temperature of $100{ }^{\circ} \mathrm{C}$. Suppose the exchanger has been in service a long time such that a fouling factor of 0.0002 $\mathrm{m}^{2} \cdot \mathrm{C} / \mathrm{W}$ is experienced. What would be the exit water temperature under these conditions?

$[1]$	5	3
$[1]$	5	2
$[4]$	5	5

