BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (MID SEMESTER EXAMINATION)

CLASS:	B.TECH	SEMESTER: III
BRANCH:	CHEMICAL	SESSION: MO/2022

SUBJECT: CL217 CHEMICAL PROCESS CALCULATIONS
TIME: 2 HOURS
FULL MARKS: 25

INSTRUCTIONS:

1. The total marks of the questions are 25.
2. Candidates attempt for all 25 marks.
3. Before attempting the question paper, be sure that you have got the correct question paper.
4. The missing data, if any, may be assumed suitably.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1 (a) Convert the following units: i) $1000 \mathrm{BTU} \mathrm{ft}^{-1}{ }^{\circ} \mathrm{F}^{-1} \mathrm{hr}^{-1}$ to $\mathrm{W} \mathrm{m} \mathrm{m}^{-1} \mathrm{~K}^{-1}$
ii) Convert 50 mm Hg gauge pressure in the psia.
iii) Convert $600{ }^{\circ} \mathrm{R}$ (Rankine) to ${ }^{\circ} \mathrm{C}$ (Celsius)
iv) Convert $10 \mathrm{gm} \mathrm{cm}^{-1} \mathrm{~s}^{-1}$ to $\mathrm{lb} \mathrm{ft}^{-1} \mathrm{~s}^{-1}$
v) Convert 40 kg mol of NH_{3} to lb mol
vi) Convert 400 ppm CO 2 in air to gm-mol/L. Take density of air is $1.29 \mathrm{gm} / \mathrm{L}$.

Q1 (b) $56 \mathrm{~kg} \mathrm{~N} \mathrm{~N}_{2}$ and $10 \mathrm{~kg} \mathrm{H}_{2}$ mixed to produce ammonia in the following reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow_{2} 2 \mathrm{NH}_{3}$. If conversion of the limiting reactant is 40%, determine the followings: i) compositions of the gas mixture after the reaction, and ii) extent of reaction.

Q2 (a) Calculate the average molecular weight of air (i) from its approximate molar composition of $79 \% \mathrm{~N}_{2}$ and $21 \% \mathrm{O}_{2}$ and (ii) from its approximate composition by mass of $77 \% \mathrm{~N}_{2}$ and $23 \% \mathrm{O}_{2}$.
Q2 (b) Methane and oxygen react in the presence of a catalyst to form formaldehyde. In a parallel reaction, methane is oxidized to carbon dioxide and water.

$$
\begin{aligned}
& \mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

The fractional conversion of methane is 0.90 and the fractional yield of formaldehyde is 0.855 . Calculate the molar composition of the reactor output stream and the selectivity of formaldehyde production relative to carbon dioxide production. Assume, feed only contains $\mathrm{CH}_{4} \& \mathrm{O}_{2}$ and molar flow rate of each component is $50 \mathrm{~mol} / \mathrm{s}$.

Q3 (a) An equimolar liquid mixture of benzene (B) and Toluene (T) is in equilibrium with its vapour at $30^{\circ} \mathrm{C}$. What is the system pressure and the composition of the vapour? At $30{ }^{\circ} \mathrm{C}$, the vapour pressures of benzene and toluene are 119 mmHg and 36.7 mmHg respectively.
Q3 (b) An ideal-gas mixture contains 35% helium, 20% methane, and 45% nitrogen by volume at 2.00 atm absolute and $90{ }^{\circ} \mathrm{C}$. Calculate (a) the partial pressure of each component, and (b) the density of the gas in $\mathrm{kg} / \mathrm{m}^{3}$.

Q4 (a) Explain the followings: i) Wet bulb temperature, ii) Bubble point pressure of a liquid mixture
Q4 (b) One kg mole of a mixture contains 0.400 kg mol of N_{2} and 0.600 kg mol of $\mathrm{C}_{2} \mathrm{H}_{4}$ at 300 K and 200 kPa absolute pressure. Calculate the followings: i) volume of the gas mixture ii) density of the gas mixture (Treat it as an ideal gas)?

Q5 (a) Define the following terms: (i) Absolute humidity, (ii) Relative humidity, and (iii) Raoult's law.

Q5 (b) Determine the followings: i) Degree of freedom of liquid water with dissolved acetone in equilibrium with their vapours, ii) Calculate the humidity of air (kg water/kg dry air) at 1 atm pressure if the partial pressure of water in air is 4 kPa.

