BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	BTECH I: CHEMICAL ENGG.	SEMESTER : III SESSION : MO/20	022
TIME:	SUBJECT: CL203 FLUID MECHANICS 3:00 Hours	FULL MARKS: 50	
INSTRUC 1. The c 2. Atten 3. The r 4. Befor 5. Table	CTIONS: question paper contains 5 questions each of 10 marks and total 50 marks. npt all questions. nissing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct questions. es/Data hand book/Graph paper etc. to be supplied to the candidates in the exa	on paper. amination hall.	
Q.1(a) Q.1(b) Q.1(c)	Write short note on the various types of forces exist on fluid elements? State and derive Pascal's Law. The right limb of a simple U-tube manometer containing mercury is open to t the lift limb is connected to a pipe in which a fluid of specific gravity 0.85 is fl the pipe is 14 cm below the level of mercury in the right limb. Evaluate the pre- in the pipe if the difference of mercury level in the two limbs is 22 cm.	he atmosphere while owing. The centre of ssure of fluid flowing	[2] [4] [4]
Q.2(a)	Define "laminar flow" and "turbulent flow". Explain the nature and quantification of turbulence.		[2]
Q.2(b)	Sketch stress versus strain diagram for Newtonian and Non-Newtonian fluid with	example.	[3]
Q.2(c)	Discuss the following flow visualization with a neat diagram: i. Timeline ii. Pathline iii. Streakline iv. Streamline		[5]
Q.3(a)	Define Fanning Friction Factor, what is the relationship between friction factor a in laminar and turbulent flow.	and Reynolds number	[2]
Q.3(b)	Discuss the application of Bernoulli's equation for measuring the velocity of fluid Explain the principle of orificemeter and derive the equation of velocity in sectional area of the pipe.	d flowing in the pipe. I terms of the cross	[3]
Q.3(c)	A pump draws a solution, specific gravity 1.84 from a storage tank through a 3 pipe (cross-sectional area = 0.0513 ft^2). The efficiency of the pump is 60 percen suction line is 3 ft/sec. The pump discharge through a 2 in schedule 40 steel area = 0.0233 ft^2) to an overhead tank. The end of the discharge pipe is 50 ft a solution in the feed tank. Friction losses in the entire piping system are 10 ft must the pump develop?	in schedule 40 steel t. The velocity in the pipe (cross-sectional bove the level of the lb _f /lb. What pressure	[5]
Q.4(a) Q.4(b)	What do you understand by the term "Fluidized bed"? Discuss the various flow patterns in agitated vessel?	resistance of 2000 N	[2] [3]

- A truck having a projected area of 6.5 m² travelling at 70 km/hour has a total resistance of 2000 N. [5] Of this 20 % is due to rolling friction and 10 % is due to surface friction. The rest is due to form drag. Calculate the co-efficient of form drag. Take density of air = 1.25 kg/m³.
- Q.5(a) Describe head capacity, power & efficiency curve of a centrifugal pump. What is cavitation and NPSH [3] of a pump?
- Q.5(b) Compare centrifugal pump and positive displacement pump.
- [3] Water flows through a venturimeter which has a diameter at the inlet of 1.2 m and a diameter of 0.5 Q.5(c) [4] m at the throat. The difference in pressure between the main and the throat is measured by a differential mercury gauge, which shows a deflection of 5.1 cm. Find the discharge through the meter and also calculate the velocity of water at the throat. Take the coefficient of discharge of the meter as 0.98.

:::::23/11/2022::::E