BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (MID SEMESTER EXAMINATION)

CLASS:	BTECH
BRANCH:	CHEMICAL

SEMESTER: III
SESSION: MO/2022
SUBJECT: CL201 THERMODYNAMICS
TIME: 2 HOURS
FULL MARKS: 25

INSTRUCTIONS:

1. The total marks of the questions are 25.
2. Candidates attempt for all 25 marks.
3. Before attempting the question paper, be sure that you have got the correct question paper.
4. The missing data, if any, may be assumed suitably.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1 (a) Show that the Gibbs energy serves as a generating function for the other thermodynamic properties
Q1 (b) A gas which occupies a volume of $0.2 \mathrm{~m}^{3}$ at a pressure of 1 bar is expanded to a final pressure of 7.0 bar. The pressure of the gas varies according to the relation $P=(1200 \mathrm{~V}+\mathrm{b})$, where P is in kPa, V is in m^{3} and b is a constant. Apply the First Law of Thermodynamics to find the work done by the gas.

Q2
(a) Relate Joule Thomson co-efficient in the following expression $\mu=-\frac{1}{C_{p}}\left[V-T\left(\frac{\partial V}{\partial T}\right)_{p}\right]$
(b) How would you obtain the Clapeyron equation from Maxwell's equations? What are the assumptions involved in the derivation of Clausius-Clapeyron equation from the Clapeyronequation?
(a) Show that $d S=\frac{c_{P}}{T} d T+\left(\frac{\partial V}{\partial I}\right)_{P} d P$

Q3 (b) A 40 kg steel casting ($\left.\mathrm{C}_{\mathrm{p}}=0.5 \mathrm{~kJ} / \mathrm{Kg} / \mathrm{K}\right)$ at a temperature of $450^{\circ} \mathrm{C}$ is quenched in 150 kg of oil $\left(C_{p}=2.5 \mathrm{~kJ} / \mathrm{Kg} / \mathrm{K}\right)$ at $25^{\circ} \mathrm{C}$. If there are no heat losses to environment, estimate (i) equilibrium temperature (ii) change in entropy of the steel casting and write opinion on the obtained value
(a) List the names of categories of equations coming under Bridgman table
(b) Steam with initial pressure of $10,000 \mathrm{kPa}$, internal energy of 3211 kJ and enthalpy of 3375 kJ enters a throttle valve and expands to 33.68 times its initial volume. Evaluate initial volume, final volume, final pressure and final internal energy, if $\Delta \mathrm{U}=-2 \mathrm{~kJ}$.
(a) Demonstrate

$$
\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}
$$

(b) Explain any two Equations of State briefly and relate the reasons for the need of EOS

	CO	BL
$[2]$	$\mathrm{CO201.1}$	2
$[3]$	$\mathrm{CO201.2}$	3

[3] CO201.1 1
[2] CO201.3 2
[3] CO201.3 5
[2] CO201.1 1
[3] CO201.3 5
[2] CO201.1 2
[3] CO201.2 2

