BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

(END SEMESTER EXAMINATION)			
CLASS: BRANCH	MSc /IMSc : CHEMISTRY	SEMESTER : I/VII SESSION : MO/2022	2
TIME:	SUBJECT: CH402/CH402 R1 CHEMICAL KINETICS & SURFACE CHEMISTR 3:00 Hours	Y FULL MARKS: 50	
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(a) Q.1(b) Q.1(c)	Write Arrhenius equation. Derive an expression for temperature variations. For a given first order reaction k is 2.6 x10 $^{-10}$ S ⁻¹ at 300 0 C and 6.7 x 10 $^{-4}$ S ⁻¹ at 500 energy of activation. What do you understand by fast reactions? Illustrate the technique used in studying reactions.	⁰ C. Calculate the	[2] [3] [5]
Q.2(a) Q.2(b) Q.2(c)	Discuss with a diagram hydrogen oxygen fuel cell in details What do you understand by corrosion. Discuss a simple model for iron rod corrodes water. Discuss the Debye-Hockel limiting law, its applicability and limitations.	under a drop of [[2] [3] [5]
Q.3(a)	The quantum yield for the reaction $2HI \rightarrow H_{x} + I_{z}$ is 2. Calculate the number of photons absorbed in an experiment in which are decomposed. (N=6.02×10 ²³)		[2]
Q.3(b)	Define the <i>Frank-Condon principle</i> . In a potential energy well, how are the vibratio and electronic transitions depicted? Draw the electronic transition v'=0 to v'=2 $(0 \rightarrow molecule$.		[3]
Q.3(c)	Draw and discuss the Jablonski diagram to show different photophysical processes.	I	[5]
Q.4(a) Q.4(b) Q.4(c)	Based on a well-known equation, what will be effect on Δ G, Δ H, and Δ S as a result. What is the assumption and limitations of Langmuir Theory of Adsorption? Writ equation directly and explain graphically BET plot for adsorption of N ₂ on silica gel at Explain 5 different types of adsorption Isotherms of gases on a variety of adsorb temperatures showing saturation pressure p ₀ .	e down the BET [-183ºC.	[2] [3] [5]
Q.5(a)	Differentiate colloidal system, SOL, and emulsion with examples.	ļ	[2]

 Q.5(b) Explain peptization, Lyophobic and lyophilic colloids with examples.
 Q.5(c) What are types of surfactants? What is CMC? Explain the factors affecting CMC in aqueous media. [3] [5]

:::::22/11/2022::::E