BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

	(LIND SEMESTER EXAMINATION)	
CLASS: BRANCH	IMSC SEMESTER : V : CHEMISTRY SESSION : MO/202	22
TIME:	SUBJECT: CH301 PHYSICAL CHEMISTRY-V: QUANTUM CHEMISTRY & SPECTROSCOPY 3:00 Hours FULL MARKS: 50	
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 		
Q.1(a) Q.1(b)	Why does IR spectrum appear as band whereas rotational spectrum appears as line? Show that, the spacing between two successive lines in rotational spectrum of a diatomic molecule is 2B where B is a rotational constant.	[2] [3]
Q.1(c)	The rotational constant for $H^{35}Cl$ is observed to be 10.5909 cm ⁻¹ . What is the value of B for $H^{37}Cl$?	[5]
Q.2(a) Q.2(b) Q.2(c)	How does IR spectrum help in the detection of functional groups and bond distance? Discuss the theory to explain Rayleigh, stokes and anti-stokes lines in the Raman spectrum. Explain why H_2 is Raman active whereas microwave and IR inactive? What are the advantages of Raman spectroscopy over IR spectroscopy?	[2] [3] [5]
Q.3(a) Q.3(b) Q.3(c)	Why electronic spectrum is a band spectrum? Explain the Frank Condon principle. How many lines can be seen for the following molecules in ¹ H NMR spectroscopy? Mention the nature of splitting also. $CH_3CH_2CH(OH)CH_2CH_3$ (CH ₃) ₂ CHCOCH ₃ (CH ₃) ₂ CHCH ₂ CHO	[2] [3] [5]
Q.4(a)	For a particle in a one dimensional box of Length L, find the probability, in the states n=1, 2 and 3, that the particle is in the region $0 \le x \le L/4$.	[3]
Q.4(b)	Which of the following functions are acceptable as wave function: i) $\varphi = x^2$ ii)	[2]
Q.4(c)	$\varphi = tanx$ iii) $\varphi = exp^{-x}$ iv) $\varphi = sinx$ Evaluate the following i) $[L_x, L_y]$ =? and ii) $[L^2, L_y]$ =?	[5]
Q.5(a)	Show how the Hamiltonian for the H atom could be written in terms of the internal motions by considering separation of the translational and internal motions.	[3]
Q.5(b)	Show that the following function is a solution of the Schrödinger equation for a simple harmonic ar^2	[3]

oscillator i) $\varphi = exp^{-ax^2}$. Find the values of ii) a and iii) energy (E) in terms of force constant (k), mass (m) and the universal constant. Q.5(c) Considering the nuclei to be fixed in space, write down the Hamiltonian for H_2^+ . Derive an expression

Q.5(c) Considering the nuclei to be fixed in space, write down the Hamiltonian for H_2^+ . Derive an expression [4] for energy levels (ground and first excited state) by constructing a suitable trial function for this system by following variational principle.

:::::21/11/2022:::::M