BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

-	ASS: ANCH		SEMESTE SESSION:		022
		SUBJECT: CH215 PHYSICAL CHEMISTRY-III			
TIME:		2 HOURS	FULL MA	JLL MARKS: 25	
 INSTRUCTIONS: 1. The total marks of the questions are 25. 2. Candidates attempt for all 25 marks. 3. Before attempting the question paper, be sure that you have got the correct question paper. 4. The missing data, if any, may be assumed suitably. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 					
04				C0	BL
Q1	(a)	What is the significance of Heisenberg uncertainty principle in quantum mechanics?		C01	1
Q1	(b)	What is the de Broglie wavelength associated with (a) an electron moving wit speed of 5.4 x 10^6 m/s, and (b) a ball of mass 150 g travelling at 30.0 m/ [Given: mass of an electron= 9.1 x 10^{-31} kg]		CO1	2
Q2	(a)	Verify that the wave function $\Psi(x) = x e^{-ax^2}$ is an eigenfunction of the operator	or [2]	C01	2
Q2	(b)	d^2/dx^2 - $4a^2x^2.$ What is the corresponding eigenvalue? Write down the time-independent Schrodinger equation for three dimension What is Hamiltonian operator?	s. [3]	C01	3
Q3	(a)	Indicate which of the following functions are acceptable as wave functions:	[2]	C01	2
Q3	(b)	$\Psi = sinx$ and $\Psi = e^{-x}$ Show that spacing between two lines in rotational spectrum is 2B.	[3]	CO4	1
Q4	(a)	Why does microwave spectrum appear as line whereas infra-red spectrum	m [2]	C04	2
Q4	(b)	appears as band? The lowest energy transitions in the rotational spectrum of HF are 41.105 ar 82.211 cm ⁻¹ . Calculate the equilibrium bond length of HF.	id [3]	CO4	2
Q5	(a)	Which of the following molecules give pure-rotational absorption spectra? N	₂ , [2]	C04	2
Q5	(b)	O_2 , NO, CO, CO_2 , N_2O , SO_2 , C_2H_4 , CH_4 , and $H_2C=O$ Explain the origin of P, Q and R branch in vibration-rotational spectrum of diatomic molecules.	of [3]	CO4	1

:::::: 28/09/2022 :::::M