BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO2022)

CLASS: IMSC SEMESTER: 1ST
BRANCH: CHEMISTRY SESSION: MO/2022

SUBJECT: CH103R1 INORGANIC CHEMISTRY-I

TIME: 02 HOURS FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

		Marks	CO	BL
Q.1(a)	A tennis ball of mass 6.0×10^{-2} Kg is moving with a speed of m s ⁻¹ . Calculate the wavelength associated with this moving tennis ball. Will the movement of this ball exhibit a wave character? (h = 6.63×10^{-34} kg m ² s ⁻¹)	[2]	CO1	2
Q.1(b)	Discuss the significance of Heisenberg's uncertainty principle.	[3]	CO1	2
Q.2(a) Q.2(b)	What is the significance of magnetic quantum number (m_l). The wavelength of first spectral line in the Balmer series is 6561Å. Calculate the wavelength of the second spectral line in Balmer series.	[2] [3]	CO1 CO1	2
Q.3(a) Q.3(b)	Discuss the physical significance of wave function. What is radial probability distribution functions? Draw radial probability distribution function for 1s and 2s orbital.	[2] [3]	CO1 CO1	1 2
Q.4(a) Q.4(b)	Explain the concept of hybridization. Predict the structure and hybridization of central element for: i) PCl_3 ; ii) SF_4 ; iii) XeF_2 ; iv) $XeOF_2$; v) PCl_3F_2 ; vi) CO_2	[2] [3]	CO4 CO4	
Q.5(a)	What are the geometrical arrangements of sp ² , sp ³ , sp ³ d ² , and dsp ² hybrid orbitals?	[2]	CO4	2
Q.5(b)	Discuss the mixing of atomic orbital in formation of non-equivalent hybrid orbitals in sp^3d and sp^3d^3 hybridization.	[3]	CO4	3

:::::: 16/01/2023 ::::::M