BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	BTECH CIVIL		SEMESTER : III SESSION : MO/20	22
TIME:	3:00 Hours	SUBJECT: CE203 FLUID MECHANICS	FULL MARKS: 50	
INSTRUC 1. The q 2. Attem 3. The m 4. Before 5. Table	TIONS: uestion paper conta opt all questions. hissing data, if any, e attempting the qu s/Data hand book/G	ains 5 questions each of 10 marks and total 50 marks. may be assumed suitably. lestion paper, be sure that you have got the correct que raph paper etc. to be supplied to the candidates in the	estion paper. examination hall.	
Q.1(a) Q.1(b) Q.1(c)	State the Newton's Derive the expression Through a very narr side of the plate is of the plate so that	law of viscosity. Derive the dimension of viscosity. on for internal pressure inside a liquid droplet. row gap of height h , a thin plate of large extent is pulled oil of viscosity μ_1 and on the other side oil of viscosity μ the shear force on the two sides of the plate is equal.	at a velocity V. On one 2. Calculate the position	[2] [3] [5]
Q.2(a) Q.2(b) Q.2(c)	With the help of a s Briefly discuss the e Values of ϕ for the i. $\phi = 3xy$ ii. $\phi = 4(x^2 - y^2)$	sketch, briefly describe the U-tube differential manometer experimental method of determination of metacentric heig following flows are given. Determine the corresponding va – y^2)	r. ght. alues of ψ .	[2] [3] [5]
Q.3(a) Q.3(b) Q.3(c)	What do you unders Differentiate betwe A cylinder 1.2 m dia N per metre length rotational speed of	stand by kinetic energy correction factor? een venturimeter and orificemeter. ameter is rotated about its axis in air having a velocity of of cylinder is developed on the body. Assuming ideal flu cylinder and location of the stagnation points. Assume ρ	128 km/hr. A lift of 5886 uid flow theory, find the = $1.236 kg/m^3$.	[2] [3] [5]
Q.4(a) Q.4(b) Q.4(c)	Briefly explain the A channel has verti and the bed slope is A horizontal rectan may occur at an ini initial depth. Also d	concept of specific energy in open channel flow. ical walls 1.2 m apart and a semicircular invert. If the cost in 2500, find the discharge. Assume $C = 54$. gular channel 4 m wide carries a discharge of 16 m ³ /s. De itial depth of 0.5 m or not. If a jump occurs, determine the letermine the energy loss in the jump.	entreline depth is 0.9 m termine whether a jump he sequent depth to this	[2] [3] [5]
Q.5(a) Q.5(b) Q.5(c)	Derive the expression With the help of a signal A Pelton wheel has $P = 8000 HP$, $H = \frac{d}{D} = \frac{1}{10}$, and $\eta_0 = \frac{1}{10}$ Find number of jets Assume $C_v = 0.98 d$	on for work done in a single acting reciprocating pump. sketch, explain the components of a Francis turbine. to be designed for the following data. = 300 <i>m</i> , <i>N</i> = 550 <i>rpm</i> , 85 % s, diameter of jet, diameter of wheel, and quantity of wat and $K_{u} = 0.46$	er required.	[2] [3] [5]

:::::24/11/2022::::E