BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

(END SEMESTER EXAMINATION)

CLASS:	BTECH
BRANCH:	CIVIL

SEMESTER : III
BRANCH: CIVIL
SESSION : MO/2022
SUBJECT: CE203 FLUID MECHANICS
TIME: $\quad 3: 00$ Hours
FULL MARKS: 50

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q.1(a) State the Newton's law of viscosity. Derive the dimension of viscosity.
Q. 1 (b) Derive the expression for internal pressure inside a liquid droplet.
Q.1(c) Through a very narrow gap of height h, a thin plate of large extent is pulled at a velocity V. On one side of the plate is oil of viscosity μ_{1} and on the other side oil of viscosity μ_{2}. Calculate the position of the plate so that the shear force on the two sides of the plate is equal.
Q.2(a) With the help of a sketch, briefly describe the U-tube differential manometer.
Q.2(b) Briefly discuss the experimental method of determination of metacentric height.
Q.2(c) Values of ϕ for the following flows are given. Determine the corresponding values of ψ.
i. $\quad \phi=3 x y$
ii. $\quad \phi=4\left(x^{2}-y^{2}\right)$
Q.3(a) What do you understand by kinetic energy correction factor?
Q.3(b) Differentiate between venturimeter and orificemeter.
Q.3(c) A cylinder 1.2 m diameter is rotated about its axis in air having a velocity of $128 \mathrm{~km} / \mathrm{hr}$. A lift of 5886 N per metre length of cylinder is developed on the body. Assuming ideal fluid flow theory, find the rotational speed of cylinder and location of the stagnation points. Assume $\rho=1.236 \mathrm{~kg} / \mathrm{m}^{3}$.
Q.4(a) Briefly explain the concept of specific energy in open channel flow.
Q.4(b) A channel has vertical walls 1.2 m apart and a semicircular invert. If the centreline depth is 0.9 m and the bed slope is 1 in 2500 , find the discharge. Assume $C=54$.
Q.4(c) A horizontal rectangular channel 4 m wide carries a discharge of $16 \mathrm{~m}^{3} / \mathrm{s}$. Determine whether a jump may occur at an initial depth of 0.5 m or not. If a jump occurs, determine the sequent depth to this initial depth. Also determine the energy loss in the jump.
Q.5(a) Derive the expression for work done in a single acting reciprocating pump.
Q.5(b) With the help of a sketch, explain the components of a Francis turbine.
Q.5(c) A Pelton wheel has to be designed for the following data. $P=8000 \mathrm{HP}, H=300 \mathrm{~m}, \mathrm{~N}=550 \mathrm{rpm}$,
$\frac{d}{n}=\frac{1}{10}$, and $\eta_{0}=85 \%$
Find number of jets, diameter of jet, diameter of wheel, and quantity of water required.
Assume $C_{v}=0.98$ and $K_{u}=0.46$
