BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

(END SEMESTER EXAMINATION MO2022)
CLASS:
BRANCH:
B.TECH.

CIVIL
SEMESTER: III
SESSION: MO/2022
SUBJECT: CE202 STRUCTURAL ANALYSIS -I
TIME: 03 HOURS
FULL MARKS: 50

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
Q.1(a) Define the degree of freedom. In two-dimension how many degrees of freedom a hinge support has?
Q. 1 (b) Classify each of the following structures as statically determinate or indeterminate. If
[3] CO1 K2 statically indeterminate, report the number of the degree of indeterminacy.
A

D
(i)

A

(ii)

(iii)
Q.1(c) A beam $A B$ of span 5 m is hinged at A. Point B has an inclined roller support, as shown in the given figure. The inclination of the roller support with the horizontal is 30°. The beam when subjected to a uniformly distributed load of $12 \mathrm{kN} / \mathrm{m}$ over the entire span of the beam. Determine the reactions at the both supports.

Q.2(a) Use method of joints to find out the zero-force member in the following truss, when there
[2] CO 2
K3 is a vertically downward load at joint ' G '

Q.2(b) Find the forces (with their nature) in the members FG, GD and CD of the truss loaded as shown in the following figure

Q.2(c) Draw the Shear Force and Bending Moment diagrams for a simply supported beam as shown in the following figure.

Q.3(a) Determine the tension in each segment of the cable shown in the figure. Also Calculate the [5] CO3 K3 vertical distance h.

Q.3(b) A three hinged parabolic arch has a span of 20 m . The central rise of the arch is 4 m . It is loaded with a point load of 4 kN at a point on the arch 4 m horizontally from the right-hand hinge. Calculate a) reactions at all the hinges, b) bending moment at 4 m from the left hinge.
Q.4(a) A simply supported beam $A B$ has a span of 8 m . Two-point loads of 20 kN each act on point $\mathrm{C}, 2 \mathrm{~m}$ from the left support and at point $\mathrm{D}, 2 \mathrm{~m}$ from the right support and at point D . Variation of the flexural rigidity (EI) are as shown the given figure. Using moment area theorem calculate mid-point deflection of the beam. Take $I=6 \times 10^{8} \mathrm{~mm}^{4}$ and $E=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$.

Q.4(b) A horizontal simply supported beam $A B$ is 12 m long. Draw the influence line diagram (ILD) bending moment for point $\mathrm{C}, 3 \mathrm{~m}$ from support A . Using the ILD find the maximum positive bending moment at C due to a uniformly distributed load of intensity $2 \mathrm{kN} / \mathrm{m}$ and length 5 m .
Q.5(a) Determine the vertical displacement of joint C of the truss shown in the figure using unit load method. Each member has cross-sectional area $(A)=500 \mathrm{~mm}^{2}$ and Modulus of Elasticity $(E)=200 \mathrm{GPa}$.

Q.5(b) A horizontal cantilever beam $A B$ of length ' L ' is subjected to uniformly distributed load of intensity ' w ' over its entire span. Point A is fixed support and point B is free end. The beam has constant flexural rigidity (El). Using the Castigliano's theorem find out the deflection and rotation at the free end of the beam.

