BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO/SP20**)

CLASS: BRANCH	IMSC I: MATHS & COMP.	SEMESTER : VII SESSION : MO 2022	
TIME:	03 Hours	SUBJECT: CA532 DATA MINING AND WAREHOUSING FULL MARKS: 50	
INSTRUC 1. The o 2. Atten 3. The n 4. Table	CTIONS: question paper contair npt all questions. nissing data, if any, m es/Data handbook/Grap	is 5 questions each of 10 marks and total 50 marks. ay be assumed suitably. oh paper etc., if applicable, will be supplied to the candidates	
Q.1(a)	Show the major probl	em areas in Data mining in the context of Efficiency and Scalability? (CO1) (BT-	[2]
Q.1(b) Q.1(c)	2) Distinguish between C Examine through a nu (CO1)(BT-4)	lassification and Regression using suitable example. (CO1) (BT-4) Imerical example that how the proximity for the binary attributes is measured.	[3] [5]
Q.2(a) Q.2(b) Q.2(c)	"Partial materializati Distinguish between c Discuss and compar examples.	on is preferred over no materialization". Justify this statement. (CO2) (BT-5) perational database systems and data warehouses. (CO2) (BT-4) e different data models used for designing Datawarehouse with suitable	[2] [3] [5]
Q.3(a) Q.3(b) Q.3(c)	List the two nontrivia Identify and explain t In the context of appl illustrate the followin i) The Join Step	l costs an Apriori approach suffers from. (CO3) (BT-4) wo techniques for improving the efficiency of Apriori Algorithm. (CO3) (BT-3) ying Apriori Property, g: ii) The Prune Step (CO3) (BT-5)	[2] [3] [5]
Q.4(a)	Explain the case whe	ere 'Gain Ratio' is preferred over 'Information gain' as an attribute selection	[2]
Q.4(b) Q.4(c)	Examine the Naïve as Construct an algorith (CO4)(BT-3)	<i>y</i> sumption of class-conditional independence. (CO4) (BT-4) Im for rule induction using Sequential Covering in rule-based classification.	[3] [5]
Q.5(a) Q.5(b)	Analyze the K-mean a List the major tasks o	lgorithm for its sensitivity for the outliers (CO4) (BT-4) f clustering evaluation. (CO5) (BT-4)	[2] [3]

Q.5(c) Select and explain a partitioning algorithm for clustering. Also analyze its complexity. (CO5) (BT-3) [5]

:::::23/11/2022::::E