BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION MO2022)

CLASS: BRANCH	MCA/IMSC I: MCA/IMH	(END SEMESTER EXAMINATION MOZUZZ)	SEMESTER: III/IX SESSION: MONSOON	
TIME:	03 Hours	SUBJECT: CA529 NETWORK SECURITY AND CRYPTOC	GRAPHY FULL MARKS: 50	
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates 				
Q.1(a) Q.1(b) Q.1(c)	If the message is cipher text if we	of Cryptography s "HELLOWORLD" and the key sequence is "TBFRGFAI use One Time Pad to encrypt the message. types of attacks on a Cryptosystem.	RFM," then what will be the	[2] [3] [5]
Q.2(a) Q.2(b) Q.2(c)	What are the diff	edure used for Verifying Keys. Terences between Public Key Cryptography and Private K e on Steganography.	Yey Cryptography?	[2] [3] [5]
Q.3(a) Q.3(b) Q.3(c)	Find the GCD of (n by Double Encryption. 161, 28) using Extended Euclidean Algorithm. led working of Data Encryption Standards (DES) using a l	olock diagram.	[2] [3] [5]
Q.4(a) Q.4(b) Q.4(c)		algorithm. erent characteristics of a Hash Function ing of SHA - 256 using a block diagram.		[2] [3] [5]
Q.5(a) Q.5(b)	In Diffie - Hellma	a = 7 and q = 11 and the plain text message is 9. What w n Key Exchange algorithm, Alice and Bob have chosen p e's secret key is 4 and Bob's secret key is 6, what	rime value = 17 and primitive	[2] [3]
Q.5(c)	Write a short not • Elliptic C	e on any one of the following: urve Cryptography (ECC) gnature Algorithm (DSA)		[5]

• Digital Signature Algorithm (DSA)

:::::25/11/2022::::E