BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: MCA SEMESTER: III
BRANCH: COMPUTER SCIENCE SESSION: MO/2022

SUBJECT: CA525 DEEP LEARNING

TIME: 3:00 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a)	Summarize the characteristics of principal component analysis method. Explain the solution of XOR problem in artificial neural networks. Compare and/or contrast between naïve Bayesian classifier and logistic regression	[CO1][BL2]	[2]
Q.1(b)		[CO1][BL2]	[3]
Q.1(c)		. [CO1][BL4]	[5]
Q.2(a)	How would you describe feedforward neural networks? What is the main idea of perceptron learning rule? Based on what you know, how would you explain general weight update in ba [CO2][BL6]	[CO2][BL1]	[2]
Q.2(b)		[CO2][BL2]	[3]
Q.2(c)		ackpropagation?	[5]
Q.3(a) Q.3(b) Q.3(c)	How would you explain the idea of regularization? Differentiate among the terms 'learning rate', 'momentum', and 'dropout' with relearning. Compare and/or contrast L_1 and L_2 regularization techniques.	[CO3][BL1] espect to deep [CO3][BL4] [CO3][BL4]	[2] [3] [5]
Q.4(a)	Explain the use of pooling layers in convolution neural networks. Explain the main idea of long short-term memory networks. Can you identify and explain the different parts of a convolution neural networks?	[CO4][BL2]	[2]
Q.4(b)		[CO4][BL2]	[3]
Q.4(c)		[CO4][BL4]	[5]
Q.5(a)	Explain the use of autoencoders. Illustrate the working of autoencoder in neural networks. Compare and/or contrast different autoencoder architectures.	[CO5][BL2]	[2]
Q.5(b)		[CO5][BL2]	[3]
Q.5(c)		[CO5][BL4]	[5]

:::::25/11/2022::::E