
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	B. TECH. I: BIOTECH.		SEMESTER : V SESSION : MO/20)22
TIME:	3:00 Hours	SUBJECT: BE328 MOLECULAR SIMULATION OF BIOMOLECULES	FULL MARKS: 50)
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 				
Q.1(a) Q.1(b) Q.1(c)	Explain all the components of the master equation of molecular docking. How different component contributes to the binding energy.		fferent components	[2] [3] [5]
Q.2(a) Q.2(b) Q.2(c)	Enlist the major requirements of a good MD integrator in detail.			[2] [3] [5]
Q.3(a) Q.3(b) Q.3(c)	What are the atom types in the force field? Why do we need them?			[2] [3] [5]

Why does cut-off not drastically reduce the computational time in MD? Q.4(a)

[2] Q.4(b) In molecular mechanics force field contribution of the angle energy term of a water molecule is [3] 18.16 kJ/mol for 120.6° angle. Calculate the equilibrium angle $\theta 0$ given that angle force constant k_{θ} is 55 kcal mol⁻¹ radian⁻². Angle energy term is expressed as $E_{\theta} = \frac{1}{2} k_{\theta} (\theta - \theta_0)^2$.

- Q.4(c) Discuss the necessity of a neighbor list in MD and explain one of the neighbor list algorithms in detail. [5]
- Q.5(a) Plot mentioned below shows the stability of a molecule as its structure varied during the [2] minimization process. What terms are used to describe points X and Z and why?

Variation

- Q.5(b) Considering the above graph, if energy minimization was carried out on a starting structure (point V), [3] at which point would energy minimization stop and why? [5]
- Q.5(c) Discuss one of the energy minimization algorithms in detail.

:::::30/11/2022::::M