BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: B TECH BRANCH: BIOTECHNOLOGY

SUBJECT: BE304 REACTION ENGINEERING

TIME: 2 HOURS

SEMESTER: V SESSION: MO/2022

FULL MARKS: 25

INSTRUCTIONS:

- 1. The total marks of the questions are 25.
- 2. Candidates attempt for all 25 marks.
- 3. Before attempting the question paper, be sure that you have got the correct question paper.
- 4. The missing data, if any, may be assumed suitably.
- 5. Tables/Data handbook/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1 (a)	Explain why the rate of disappearance of NO and the rate of formation of	Marks [2]	CO 1,2	BL 3,4
Q1 (b)	N_2 are not the same in the reaction, $2CO(g) + 2NO(g) \rightarrow 2CO_2(g) + N_2(g)$. On doubling the concentration of reactant, the rate of reaction triples. Find the reaction order.	[3]	1,2	3
Q2 (a)	What plot of experimental data can be used to evaluate the activation energy, E_a , of a reaction? How is E_a related to this plot?	[2]	1,2	1, 2
Q2 (b)	The reaction between nitric oxide and oxygen $2 \text{ NO} + O_2 \rightarrow 2 \text{ NO}_2$ follows the rate law - d[O ₂] / dt = k[NO] ² [O ₂]. Suggest a reaction mechanism between nitric oxide and oxygen.	[3]	2	3,4
Q3 (a)	What are the chief requirements that must be met by a plausible reaction mechanism? Why do we say "plausible" mechanism rather than "correct" mechanism?	[2]	1,2	2,3
Q3 (b)	(i) In the reaction $H_2O_2(aq) \rightarrow H_2O(l) + \frac{1}{2}O_2(g)$, the initial concentration of H_2O_2 is 0.2546 M, and the initial rate of reaction is 9.32×10^{-4} M s ⁻¹ . What will be $[H_2O_2]$ at $t = 35$ s?	[1.5 x 2 = 3]	2	2,3,4
	What can be concluded about the order of this reaction?			
Q4 (a)	Following are two statements pertaining to the reaction $2A + B \rightarrow 2C$, for which the rate law is <i>rate</i> = $k[A][B]$. Identify which statement (A or B) is true and which is false (A or B) and explain your reasoning.	[2]	1,2	3
	(A) The value of k is independent of the initial concentrations $[A]_0$ and $[B]_0$.			
Q4 (b)	 (B) The unit of the rate constant for this reaction can be expressed either as s⁻¹ or min⁻¹. The following liquid-phase series reaction is taking place in a constant volume batch reactor. 	[3]	2	3
	$(k_1, k_2, k_2) $			

$A \xrightarrow{\kappa_1} B \xrightarrow{\kappa_2} C$ The first reaction is first order, and the second reaction is zero order.

Determine the concentrations of A, B and C as functions of time.

Q5 (a) In a reaction mechanism, (a) what is the difference between an *activated complex* and an *intermediate*? (b) What is meant by the rate-determining step? Which elementary reaction in a reaction mechanism is often the rate-determining step?

Q5 (b)

- (i) Why reaction of higher order is unknown?
 - (ii) What affects the rate constant of a reaction?

(iii) Why do drugs follow zero order kinetics? You may use the following sample profile of common drug metabolism:

:::::: 29/09/2022 :::::M

[2] 1,2 2

[1x3 = 1,2 2,3,4 3]