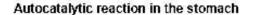
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

	(END SEMESTER EXAMINATION)		
CLASS: BRANCH		SEMESTER : V SESSION : MO/2022	
TIME:	SUBJECT: BE304 REACTION ENGINEERING 3:00 Hours FUL	FULL MARKS: 50	
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(a) Q.1(b)	Discuss the reaction rate of homogeneous reactions. For a reactant A (initial concentration C_{Ao}), its C_A varies according to $(1/C_A) - (1/C_{Ao}) =$	[2] k t. [3]	
Q.1(c)	where 't' is time and 'k' is kinetic constant. Derive an expression for the rate of reaction. (i) Milk is pasteurized if it is heated to 63° C for 30 minutes, but if it is heated to 74° C it needs 15 seconds for the same result. Find the activation energy for this sterilization (ii) The pyrolysis of ethane proceeds with an activation energy of about 300 kJ/mol. How much faster is the decomposition at 650° C than at 500° C?	only [2x2.5=5]	
Q.2(a)	(i) What is €a in variable density system (ii) Find €a on this reaction: A→3R.	[1+1=2]	
Q.2(b)	When a concentrated urea solution is stored, it slowly condenses to biuret by the following elementary reaction:	g [3]	
Q.2(c)	$2 \text{ NH2-CO-NH2} \rightarrow \text{NH2-CO-NH2} + \text{NH3}$ To study the rate of condensation a sample of urea (C = 20 milliliter) is stored at 100°C after 7 hr 40 min we find that 1 mol% has turned into biuret. Find the rate equation for condensation reaction. In the hippopotamus, digestion occurs as an autocatalytic reaction in the stomach followe	this	
,	a catalytic reaction in the intestines. This system can be modelled as a series of CSTR-I The volumetric flow rate of food intake into the system can be assumed to be 100 L/day, concentration of 7.5 mol/L. The volume of the stomach (modelled as CSTR) is 450 Reciprocal rates (in moles/L-day) for the two types of reactions are provided in figures in data sheet. If the total conversion of 50% is observed, what is the volume of the intestines (<i>Note: Required data is provided separately at the end of the question paper</i>).	PFR. at a) L. the	
Q.3(a) Q.3(b)	What are the different factors to be considered for reactor design? A liquid reactant stream (1 mol/L) passes through two MFR's in series. The concentration the exit stream of the first reactor is 0.5mol/L. Find the concentration in the exit stream the second reactor. The reaction is second order with respect to 'A' and $V_2/V_1 = 2$		
Q.3(c)	A gaseous feed of pure A with $C_{A0} = 1 \text{ mol/L}$ enters a mixed flow reactor of 2-liter volume reacts to give R. The reaction kinetics and stoichiometry are given by $2A \rightarrow R$, $-r_A=0.05C_{A2}$ mol / (L.s). Find the feed rate (L /min) that will give an our concentration $C_A=0.5 \text{ mol/L}$.		
Q.4(a) Q.4(b)	Define Recycle ratio and give its significance of varying it from 0 to ∞ An aqueous reactant stream with CA0 = 4 mol/L passes through a mixed flow reactor follow by a plug flow reactor. Determine the concentration at the exit of the plug flow reactor if = 1 mol/L in the mixed reactor. The reaction is second order with respect to A and Vplug/Vmixed = 3.		
Q.4(c)	In an isothermal batch reactor, 70% of reactant A is converted in 13 minutes. Find the sp time and space velocity needed to effect this conversion (i) in a plug flow reactor and (ii) in a mixed flow reactor	pace [2.5 + 2.5 = 5]	
Q.5(a)	(i) What do you mean by effective diffusivity?(ii) Define effectiveness factor.	[1+1=2]	
Q.5(b)	The general reaction stoichiometry for G/L reactions on solid catalyst is $aA(g) (g \rightarrow l) + b B (l)$ on <u>catalyst surface</u> \rightarrow Products.	[3]	
	State the sequence of steps involved in the overall reaction process for G/L reactions on s	olid	


catalyst.


Q.5(c) While being shown around Lumphead Laboratories, you stop to view a reactor used to obtain [5] kinetic data. It consists of a 5-cm inner diameter glass column packed with a 30-cm height of active catalyst. Is this a differential or integral reactor? Explain your answer.

:::::24/11/2022::::M

DATA SHEET

Data for Q 2 (c)

