BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (MID SEMESTER EXAMINATION)

CLASS: B. TECH
BRANCH: BIOTECH
SEMESTER: $5^{\text {th }}$
SESSION: MO/2022
SUBJECT: BE303 MASS TRANSFER OPERATIONS
TIME:
2 HOURS
FULL MARKS: 25

INSTRUCTIONS:

1. The total marks of the questions are 25.
2. Candidates attempt for all 25 marks.
3. Before attempting the question paper, be sure that you have got the correct question paper.
4. The missing data, if any, may be assumed suitably.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1 (a) Define Raoult's Law
Q1 (b) In an oxygen-nitrogen mixture at $25^{\circ} \mathrm{C}$ and 1 atm, the concentration of oxygen at two planes 0.2 cm apart are 20% and 30% v/v respectively. Calculate the rate of diffusion if nitrogen is not diffusing. Diffusivity is $0.215 \mathrm{~cm}^{2} / \mathrm{s}$.

Q2 (a) Write the equation to calculate minimum number of plates in a distillation column.
Q2 (b) Draw a labeled diagram of a distillation column with reflux.

Q3 A plant must distill a mixture containing 70 mole \% methanol and 30 mole \% water. The overhead product is 98 mole \% methanol and bottom product is 98 mole $\%$ water. If $q=1, a=3.32$ and R_{D} is 2.4 , Graphically calculate, the number of theoretical plates if

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
Y	0.42	0.58	0.67	0.73	0.78	0.82	0.87	0.91	0.96	1

Q4 (a)

Identify the point that indicates the concentration of 40% A; 40% B and 20% C.

Q4
(b) Draw and describe the temperature concentration phase diagram.
(a) Define Plait Point in a Binodal curve of LLE.

Q5 (b) A clarified fermentation beer (H) containing $250 \mathrm{mg} / \mathrm{L}$ of antibiotic is to be extracted using butyl acetate (L). $\mathrm{K}=50$. We plan to use $\mathrm{H}=450 \mathrm{~L} / \mathrm{h}$ and $\mathrm{L}=$ $36 \mathrm{~L} / \mathrm{h}$ to recover 95% antibiotics. How many stages are required for this separation?

