BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: B. TECH SEMESTER: V
BRANCH: BIOENGINEERING & BIOTECHNOLOGY SESSION: MO/2022

SUBJECT: BE303 MASS TRANSFER OPERATION

TIME: 3:00 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

.....

Q.1(a) (b)	Define Fick's 1 st law of diffusion with mathematical notations. In an oxygen-nitrogen gas mixture at 1 atm (1.013×10 ⁵ kg/m.s ²), 25 °C, the concentration of two plates 0.2 cm apart are 10% and 20% (by volume) respectively. If the diffusivity of oxygen in nitrogen is 0.215 cm ² /s, and R = 8314 kg.m ² /s ² .K.mole; Calculate the flux of oxygen when i. Nitrogen is non-diffusing ii. There is equimolar counter diffusion	[2] [8]	CO 1 1	BL 2 2
Q.2	A distillation column is used to separate methanol from water. The feed is a mixture that containing 40 mole % methanol. The overhead product is 97 mole % methanol and bottom one was 0.5 mole %. Consider, saturated liquid feed is provided, relative volatility is 3.32, and reflux ratio is 3.5. Calculate, number of theoretical plates, minimum number of plates, and feed plate location.	[10]	2	5
Q.3(a) (b)	Calculate the fraction extracted in a LLE, if E = 2. A clarified fermentation beer (H) containing 260 mg/L of antibiotic is to be extracted using butyl acetate (L). K = 57. We plan to use H = 450 L/h and L = 37 L/h to recover 99% antibiotics. How many stages are required for this separation?	[2] [8]	3	2 5
Q.4	60 ton/day of oil-sand (25% oil, 75% sand) is to be leached with 40 ton/day naptha in a counter current extractor. The final extract contains 40% oil and 60% naptha. The underflow from each unit contains 35% solvent and 65% sand. If the overall efficiency is 80%, graphically determine how many extractors will be required?	[10]	4	5
Q.5(a)	Write the advantage of using carbon-di-oxide as supercritical fluid.	[2]	5	2
(b)	Write a short note on aqueous two phase extraction.	[3]	5	2
(c)	Draw a labeled diagram of a continuous distillation column with reflux.	[5]	5	3

:::::28/11/2022:::::M