# BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI <br> (END SEMESTER EXAMINATION) 

| CLASS: | B.TECH |
| :--- | :--- |
| BRANCH: | BIOTECHNOLOGY |

SEMESTER : III
BRANCH: BIOTECHNOLOGY SESSION : MO/2022
SUBJECT: BE206 CHEMICAL PROCESS CALCULATIONS
TIME: $\quad 3: 00$ Hours
FULL MARKS: 50

## INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.
2. Attempt all questions.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q.1(a) The analysis of the gas sample is given below (volume basis): Basis: $100 \mathrm{~m}^{3}$ of gas sample.

CH4 $=66 \%, \mathrm{CO} 2=30 \%, \mathrm{NH} 3=4 \%$.
Calculate: (i) The average molecular weight of the gas
(ii) The density of the gas at 2 atm and 303 K .
Q.1(b) In the production of a drug having a molecular weight of 192, the exit stream from the reactor flows at a rate of $10.5 \mathrm{~L} / \mathrm{min}$. The drug concentration is $41.2 \%$ (in water), and the specific gravity of the solution is 1.024 . Calculate the concentration of the drug (in $\mathrm{kg} / \mathrm{L}$ ) in the exit stream, and the flow rate of the drug in $\mathrm{kg} \mathrm{mol} / \mathrm{min}$.
Q.2(a) A mixture containing $45 \%$ benzene (B) and $55 \%$ toluene ( $T$ ) by mass is fed to a distillation column. An overhead stream of $95 \mathrm{wt} \% \mathrm{~B}$ is produced, and $8 \%$ of the benzene fed to the column leaves in the bottom stream. The feed rate is $2000 \mathrm{~kg} / \mathrm{h}$. Determine the overhead flow rate and the mass flow rates of benzene and toluene in the bottom stream
Q.2(b) Solution-1 containing $30 \%$ sulfuric acid flowing at the rate $10 \mathrm{Kg} / \mathrm{min}$ combines with Solution-2 containing $20 \%$ sulfuric acid flowing at the rate $5 \mathrm{Kg} / \mathrm{min}$, if their product is out at the rate 20 $\mathrm{Kg} / \mathrm{min}$ what is the percentage of sulfuric acid in the product?
Q.3(a) Two reactions take place in a continuous reactor operating at steady state,
$\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{H}_{2} \rightarrow 2 \mathrm{CH}_{4}$
The feed stream contains 85.0 mole \% ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ and 15 mole \% inert (i.e. unreactive) components. The fractional conversion of ethane is 0.501 , and the fractional yield of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ is 0.471 . What is the molar composition of the product gas?
Q.3(b) In the Deacon process for the manufacture of chlorine, HCl and O 2 react to form Cl 2 and H 2 O . Sufficient air ( 21 mole\% 02 , $79 \% \mathrm{~N} 2$ ) is fed to provide $35 \%$ excess oxygen and the fractional conversion of HCl is $85 \%$. Determine the amount of air required per mole of HCl fed into the process. Calculate the mole fractions of the product stream components using (i) molecular species balances (ii) atomic species balances (iii) extent of reaction.
Q.4(a) To sterilize a fermenter, two streams of water are fed. Feed 1 is $120 \mathrm{~kg} / \mathrm{min}$ at $30^{\circ} \mathrm{C}$ and Feed 2 is $175 \mathrm{~g} / \mathrm{min}$ at $65^{\circ} \mathrm{C}$. The pressure inside the fermenter is 17 bar (absolute) and 295 kg of water vapour leaving as saturated steam. The exiting steam leaves the fermenter through a $10-\mathrm{cm}$ ID pipe. Calculate the required heat input to the fermenter in $\mathrm{kJ} / \mathrm{min}$ if the steam leaving is saturated at the fermenter pressure. Neglect kinetic energies of the liquid inlet streams. Given Data: Specific enthalphy for H 20 ( l ) at $30{ }^{\circ} \mathrm{C}=125.7 \mathrm{~kJ} / \mathrm{kg}$ Specific enthalphy for $\mathrm{H} 20(\mathrm{l})$ at $65{ }^{\circ} \mathrm{C}=271.9 \mathrm{~kJ} / \mathrm{kg}$ Specific enthalphy for saturated vapour H 20 (v) at $17 \mathrm{bar}=2793.4 \mathrm{~kJ} / \mathrm{kg}$ at $204^{\circ} \mathrm{C}$
Q.4(b) Calculate the heat required (in kJ , up to 1 digit after the decimal point) to raise the temperature of 1 mole of a solid material from $100{ }^{\circ} \mathrm{C}$ to $1000{ }^{\circ} \mathrm{C}$. The specific heat ( Cp ) of the material (in J/mol$K$ ) is expressed as $C p=20+0.005 \mathrm{~T}$, where $T$ is in $K$. Assume no phase change.
Q.5(a) Calculate the standard heat of reaction of the following reaction.
$\mathrm{CH} 3 \mathrm{OH}(\mathrm{l})+\mathrm{O2}(\mathrm{~g}) \rightarrow \mathrm{HCHO}(\mathrm{g})+\mathrm{H} 2 \mathrm{O}(\mathrm{l})$
Data:
Component $\Delta H^{\circ} f(\mathrm{kcal} / \mathrm{mol})$

| CH 3 OH | -57.13 |
| :--- | :--- |
| HCHO | -25.94 |
| H 2 O | -68.27 |

Q.5(b) Calculate the enthalpy change between the reactants and products at standard condition if 50 mole of CO 2 is produced according to the following reaction.
2 C 4 H 10 (g) $+13 \mathrm{O} 2(\mathrm{~g}) \rightarrow 8 \mathrm{CO} 2(\mathrm{~g})+10 \mathrm{H} 2 \mathrm{O}(\mathrm{l})$
Component $\Delta H^{\circ} f(\mathrm{kcal} / \mathrm{mol})$

| $\mathrm{C} 4 \mathrm{H} 10(\mathrm{~g})$ | -30.04 |
| :--- | :--- |
| $\mathrm{CO} 2(\mathrm{~g})$ | -93.98 |
| $\mathrm{H} 2 \mathrm{O}(\mathrm{l})$ | -68.27 |
| $\mathrm{O} 2(\mathrm{~g})$ | 0.0 |

