
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

ARCHITECTURE	SEMESTER : III SESSION : MO/20	022
SUBJECT: AR204 STRUCTURAL MECHANICS		
3:00 Hours	FULL MARKS: 50)
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 10 marks and total 50 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 		
Define the terms: pure shear, uniaxial, and bi-axial state of stress. At a particular point, the material has biaxial state of stress with σ_x = 14 MPa an Determine the orientation of an inclined plane through the point such that the norr	[CO 1] [BL1] and σ_y = -56 MPa. mal stress on the	[2] [3] [5]
Dutline the assumptions followed to derive the shear stress along the cross-sectio CO 1, 2, 3] [BL 4] Consider a beam of rectangular cross-section with width <i>b</i> and height <i>h</i> and it is su	on of the beams. bjected to shear	[2] [3] [5]
CO 1, 2, 3] [BL 1]	-	[2]
[CC Vrite and explain first and second moment-area theorem. [CO 1, Determine the angle of rotation and deflection at the free end of a cantilever bear concentrated load <i>P</i> at the free end. The beam has length <i>L</i> and flexural rigidity	0 1, 2, 4] [BL 2] 2, 4] [BL 2] m subjected to a <i>EI</i> . Use moment-	[2] [3] [5]
A cantilever beam is subjected to a couple ${M}_{ m 0}$ as shown in Figure 1. The beam H lexural rigidity EI . Derive the expression of angle of rotation at the free end of	has length <i>L</i> and the beam using	[2] [3]
	SUBJECT: AR204 STRUCTURAL MECHANICS 3:00 Hours IONS: estion paper contains 5 questions each of 10 marks and total 50 marks. t all questions. ssing data, if any, may be assumed suitably. attempting the question paper, be sure that you have got the correct question in Data hand book/Graph paper etc. to be supplied to the candidates in the examination of the book/Septime book/Graph paper etc. to be supplied to the candidates in the examination of the terms: pure shear, uniaxial, and bi-axial state of stress. At a particular point, the material has biaxial state of stress with $\sigma_x = 14$ MPa ar Define the terms: pure shear, uniaxial, and bi-axial state of stress with $\sigma_x = 14$ MPa ar Determine the orientation of an inclined plane through the point such that the norm plane is zero. [CO 1, 3] [BL 3] Define shear stresses in beams. [CO Dutline the assumptions followed to derive the shear stress along the cross-section CO 1, 2, 3] [BL 4] Describe the double integration method used to determine the deflection of beams. [CO 1, 2, 3] [BL 1] Describe the double integration method used to determine the deflection of beams. [CO 1, 2, 3] [BL 1] Describe the double integration and deflection at the free end of a cantilever beam concentrated load P at the free end. The beam has length L and flexural rigidity trea method. [CO 1, 2, 3] [What is Castigliano's first theorem? Explain with an example. [CO 1, A cantilever beam is subjected to a couple M_0 as shown in Figure 1. The beam is lexural rigidity EI . Derive the expression of angle of rotation at the free end of castigliano's theorem. [CO 1, 2, 3, 4] M_0 [CO 1, 2, 3, 4]	SUBJECT: AR204 STRUCTURAL MECHANICS 3:00 Hours FULL MARKS: 50 IONS: estion paper contains 5 questions each of 10 marks and total 50 marks. t all questions. sing data, if any, may be assumed suitably. attempting the question paper, be sure that you have got the correct question paper. Data mand book/Graph paper etc. to be supplied to the candidates in the examination hall. Define principal planes and principal stresses for plane stress condition of the body. [C0 1] [BL 1] t a particular point, the material has biaxial state of stress. [C0 1] [BL 1] At a particular point, the material has biaxial state of stress with $\sigma_x = 14$ MPa and $\sigma_y = -56$ MPa. Define the terms: pure shear, uniaxial, and bi-axial state of stress with $\sigma_x = 14$ MPa and $\sigma_y = -56$ MPa. Determine the orientation of an inclined plane through the point such that the normal stress on the lane is zero. [C0 1, 2, 3] [BL 1] Define the assumptions followed to derive the shear stress along the cross-section of the beams. C0 1, 2, 3] [BL 4] Onsider a beam of rectangular cross-section with width <i>b</i> and height <i>h</i> and it is subjected to shear orce V. Show that the maximum shear stress of the beam is 1.5 times of the average shear stress. C0 1, 2, 3] [BL 1] Describe the double integration method used to determine the deflection of beams. [C0 1, 2, 4] [BL 2] Describe the double integration method used to determine the deflection of beams. [C0 1, 2, 4] [BL 2] Determine the angle of rotation and deflection at the free end of a cantilever beam subjected to a concentrated load <i>P</i> at the free end. The beam has length <i>L</i> and flexural rigidity <i>EL</i> . Use moment- are method. [C0 1, 2, 3, [BL 3] What is Castigliano's first theorem? Explain with an example. [C0 1, 2, 3, [BL 3] What is Castigliano's first theorem? Explain with an example. [C0 1, 2, 3, 4] [BL 2] Ac antilever beam is subjected to a couple M_0 as shown in Figure 1. The beam has length <i>L</i> and Example and theorem. [C0 1, 2, 3, 4] [BL 6] M_0 M_0 M_0 M_0

Q.4(c) A simply supported beam AB of length L supports uniform load of intensity q as shown in Figure 2. [5] Evaluate the strain energy of the beam from the bending moment of the beam. CO 1, 2, 3, 4] [BL 5]

- Q.5(a) Define the critical load and equivalent length of a column. [CO 1, 2] [BL 1] [2]
- Q.5(b) Calculate the ratios of equivalent length and actual length of columns with following end [3] conditions:
 - (i) both ends pinned
 - (ii) fixed at base and free at upper end (iii) both ends fixed.
- [CO 1, 2, 3] [BL 3]
- Q.5(c) Derive the expression for critical load of a column when both the ends of it are pinned. Consider the [5] length and flexural rigidity of the column as *L* and *EI*, respectively. [CO 1, 2, 3] [BL 6]

:::::24/11/2022::::E