BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:	M.TECH	SEMESTER : III	
BRANCH	I: SER	SESSION : MO/19	
TIME:	SUBJECT: SR614 TURBULENCE MODELING IN CFD 3 HOURS	FULL MARKS: 50	
INSTRUC 1. The c 2. Atter 3. The r 4. Befor 5. Table	CTIONS: question paper contains 5 questions each of 10 marks and total 50 marks. npt all questions. nissing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct questi ss/Data hand book/Graph paper etc. to be supplied to the candidates in the exa	on paper. amination hall.	
Q.1(a)	Describe the characteristics of wall-bounded shear flow.		[5]
Q.1(b)	Discuss on the variance, r.m.s. and correlation functions in time and space.		[5]
Q.2(a) Q.2(b)	Explain the Boussinesq eddy-viscosity hypothesis. Write short notes on Reynolds and Favre (mass) averaging of a flow variable $\phi.$		[5] [5]
Q.3(a)	Briefly discuss about the molecular transport of momentum.		[5]
Q.3(b)	Describe the Baldwin-Lomax zero equation / algebraic turbulence model.		[5]
Q.4(a)	Describe the Spalart-Allmaras one-equation turbulence model.	ω turbulence models.	[5]
Q.4(b)	Discuss on the implementation of boundary conditions for Spalart-Allmaras and k		[5]
Q.5(a)	Briefly discuss on the Large Eddy Simulation (LES), its advantages and limitations		[5]
Q.5(b)	Write short notes on Smagorinsky SGS model and Direct Numerical Simulatoin (DN	IS).	[5]

:::::27/11/2019:::::M