BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	MTECH H: SER		SEMESTER : III SESSION : MO/19	
TIME:	3 HOURS	SUBJECT: SR611 FUNDAMENTALS OF TURBULENCE	FULL MARKS: 50	
INSTRU 1. The o 2. Atter 3. The o 4. Befor 5. Table	CTIONS: question paper cont mpt all questions. missing data, if any, re attempting the ques/Data hand book/C	ains 5 questions each of 10 marks and total 50 marks. may be assumed suitably. Jestion paper, be sure that you have got the correct que iraph paper etc. to be supplied to the candidates in the d	stion paper. examination hall.	
Q.1(a)	How do you characterize turbulence?			[5]
Q.1(b)	Briefly explain the phenomena of origin of turbulence.			[5]
Q.2(a)	Using the Reynolds decomposition, obtain the Reynolds momentum equation.			[5]
Q.2(b)	Using the molecular collision theory, show that the kinematic viscosity is directly proportional to the mean free path of the molecules.			[5]
Q.3(a)	What do you understand by pure shear flow? Describe the role of viscous dissipation and turbule production in a pure shear flow.			[5]
Q.3(b)	What is the significance of isotropic turbulence in a pure shear flow?			[5]
Q.4(a)	Using suitable diagrams, discuss the different types of free shear flows.			[5]
Q.4(b)	Derive the Logarithmic Friction law for turbulent flows.			[5]
Q.5(a) Q.5(b)	What is the need of Justify that how ca spectrum analysis.	statistical analysis in case of a turbulent flow? In a three dimensional spectrum analysis could beneficia	al over one dimensional	[5] [5]

:::::25/11/2019:::::M