BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	M.TECH H: CHEM, MECH	SEMESTER : I SESSION : MO/19	
SUBJECT: SR578 COMPUTATIONAL FLUID DYNAMICS TIME: 3:00 HOURS		YNAMICS FULL MARKS: 50	
INSTRUC 1. The c 2. Atten 3. The r 4. Befor 5. Table	CTIONS: question paper contains 5 questions each of 10 marks and total mpt all questions. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got th es/Data hand book/Graph paper etc. to be supplied to the cand	50 marks. e correct question paper. dates in the examination hall.	
Q.1(a) Q.1(b)	Define and give examples of elliptic, parabolic and hyperbolic pa The governing nondimensional equations of fluid motion for stear two-dimensions are given by, δu/δx + δv/δy = 0	nd hyperbolic partial differential equations. motion for steady, inviscid and incompressible flow in	
	$u \partial u/\partial x + v \partial u/\partial y + \partial p/\partial x = 0$		
	u ðv/ðx + v ðv/ðy + ðp/ðy = 0 Classify the system of equations.		
0.2(a)	Given the function $f(x) = \sin(2\pi x)$ determine $\partial f/\partial x$ at $x=0.3$ usin	g central difference representation of [5]	

- Q.2(a) Given the function $f(x) = \sin(2\pi x)$, determine $\partial f/\partial x$ at x=0.3 using central difference representation of [5] order $(\Delta x)^2$. Use step size of 0.01 and 0.25. Compare it with the analytical value and discuss the results.
- Q.2(b) The finite difference scheme of the linear convection equation $\partial u/\partial t + c \partial u/\partial x = 0$ (c>0) is given by, [5] n+1 n

$$\frac{\mathbf{u}_{j} - \mathbf{u}_{j}}{\Delta t} = -\frac{c}{\Delta x} (\mathbf{u}_{j}^{n} - \mathbf{u}_{j-1}^{n})$$

Perform the Von Neumann stability analysis and comment on the stability of the scheme.

Q.3(a)	Explain line Gauss-Seidel iteration method for the solution of 2-D Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$	[5]
Q.3(b)	What do you understand by explicit and implicit schemes? Explain with suitable examples.	[5]
Q.4(a) Q.4(b)	Derive the incompressible Navier-Stokes equations in vorticity-stream function formulations. What do you understand by staggered grid? Why it is required for solving incompressible Navier-Stokes equations?	[5] [5]

Q.5(a)	Discuss briefly on global and local time steps.	[5]
Q.5(b)	Explain the farfield and periodic boundary conditions.	[5]

:::::25/11/2019:::::E