BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	M.TECH I: ET		SEMESTER : I SESSION : MO/19
	:	SUBJECT: SR504 FUNDAMENTALS OF COMBUSTION	
TIME:	3 HOURS		FULL MARKS: 50
INSTRUC 1. The c 2. Atter 3. The r 4. Befor 5. Table	CTIONS: question paper contain npt all questions. nissing data, if any, ma re attempting the ques es/Data hand book/Grap	s 5 questions each of 10 marks and total 50 marks. ay be assumed suitably. tion paper, be sure that you have got the correct o ph paper etc. to be supplied to the candidates in th	question paper. ne examination hall.
Q.1(a)	Describe the various n method for determinin	nethods for determining adiabatic flame temperatu g the adiabatic flame temperature in detail.	ure. Illustrate the iterative

Q.1(b) A gas turbine engine operates at an equivalence ratio of 0.286 with an air flow rate of 15.9Kg/s. The [5] equivalent composition of the fuel (natural gas) is $C_{1.16}H_{4.32}$. Determine the fuel mass flow rate and the operating air-fuel ratio for the engine. MW_{air} =28.85gms.

[5]

- Q.2(a) What is a Second order reaction? Explain with example. Derive the equation for rate constant and half- [5] life of a second order reaction.
- Q.2(b) How does change in temperature affect the rate of reaction? Derive the Arrhenius relation for the [5] same. How does the activation energy differ for different types of reaction?
- Q.3(a) What are the factors that govern the shape and size of a laminar flame?Explain in detail the combustion [5] wave structure in a laminar flame with suitable schematic diagram relative to the temperature profile and concentration of intermediate products in different zones.
- Q.3(b) Calculate the limits of inflammability of a gas mixture containing 40% methane, 20% butane and 40% [5] hydrogen. Limits of inflammability for methane (5.3 and 14), butane (1.9 & 8.5) and hydrogen (4.0 & 75).
- Q.4(a) Demonstrate the process of transition of deflagration wave to a detonation wave. What are the [5] experimental methods for determination of detonation velocity? Discuss in detail.
- Q.4(b) Explain the various parts of a Hugoniot curve using a suitable diagram. Prove that at point j the [5] detonation velocity is the sum of particle velocity and velocity of sound?
- Q.5(a) What are the different types of liquid propellants used? Discuss in detail the various zones which are [5] observed during the combustion process in a liquid rocket engine using suitable diagram.
- Q.5(b) What are various types of igniters used in a solid rocket motor?Describe the working of a pyrotechnic [5] igniter, explaining the components involved with a suitable diagram.

:::::04/12/2019::::E