BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BE BRANCH: ECE SEMESTER: VII SESSION : MO/2019

FULL MARKS: 25

[2]

[2]

SUBJECT : MEC2011 DIGITAL IMAGE PROCESSING TECHNIQUES

TIME: 1.5 HOURS

INSTRUCTIONS:

- 1. The total marks of the questions are 30.
- 2. Candidates may attempt for all 30 marks.
- 3. In those cases where the marks obtained exceed 25 marks, the excess will be ignored.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. The missing data, if any, may be assumed suitably.
- -----
- Q1 (a) A video has one frame of size 640x480, with 3 bytes/pixel. It is assumed that the video is taken at 30 frames/seconds. What is the storage and transmission time required? Consider 64 kbps link speed.
 - (b) Perform the discrete convolution for X (m, n) and H (m, n). Where (0, 0) showing the [3] element is at origin.

X(m, n)		H(m, n)			
1	4	1	1	1	
2 (0,0)	5	3	1(0,0)	-1	

Q2 (a) Formulate a simple image formation model.

(b) Consider the image segment shown. Let intensities in domain are V = {1, 2}, Compute the [3] lengths of shortest 4- path, 8-path, and m-path between p and q, if the particular path does not exist between these two points, explain why?

- 3 1 2 1 (q) 2 2 0 2 1 2 1 1 (p) 1 0 1 2
- Q3 (a) Perform the median filtering on y (m) = {2, 3, 8, 4, 2}, consider window w= [-1, 0, 1]. [2]
 (b) Derive the mask for 2D discrete Laplacian operator. Differentiate single derivative and double derivative properties. Give one application of Laplacian in image processing.
- Q4 (a) Perform the negative of the image on the following, considering intensities in the range 0- [2] 7.

		5 5	/	0 2						
(b)	Perforr	n the hist	ogram equ	alization fo	or the 8X8	,eight lev	el image g	iven belo	w.	[3]
	Pixel d	istributior	n of the im	age						
	rk	0	1	2	3	4	5	6	7	
	pk	8	10	10	2	12	16	4	2	

Q5 (a) Write down the property for orthogonal matrix and unitary matrix. [2]
(b) For the 2-D discrete Fourier transform write the 2x2 kernel, find the coefficients for the [3] given image below. And from the coefficients recover back the image.
1 2

3 4

Q6 (a) Find the fourier transform for 2D rect function.

$$y) = 1 \text{ for } 0 \le x \le X$$

f(x,

- 1 for $0 \le y \le Y$
- (b) Explain Homomorphic Filter showing steps in block diagram with appropriate [3] mathematics. Assuming the filter to be Gaussian high pass filter. What is the specific property of the Homomorphic filter.

:::: 26/09/2019M ::::::