BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

	(END SEMESTER EXAMINATION)		
CLASS: BRANCH	BE I: ECE	SEMESTER : VII SESSION : MO/19	
SUBJECT: MEC1125 INFORMATION THEORY AND CODING TIME: 3:00 HOURS FULL MARKS: 60			
 INSTRUCTIONS: 1. The question paper contains 7 questions each of 12 marks and total 84 marks. 2. Candidates may attempt any 5 questions maximum of 60 marks. 3. The missing data, if any, may be assumed suitably. 4. Before attempting the question paper, be sure that you have got the correct question paper. 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(a) Q.1(b)) Explain, entropy is a concave function.		
Q.1(c)	Prove that the entropy of a Gaussian random variable is only depending upon its finite variance of the distribution. Also compare its entropy with other continuous random variables.		[4] [6]
Q.2(a) Q.2(b)	Define Instantaneous Codes. Consider a discrete memoryless source having alphabet YY: $\{A_1, A_2, A_3, A_4\}$ and corresponding probabilities $\{0.5, 0.125, 0.25, and 0.125\}$. Determine the arithmetic code for the sequence $A_2A_3A_1A_4A_1$ with pictorial illustration.		[2] [4]
Q.2(c)			[6]
Q.3(a) Q.3(b)	Evaluate the overall channel capacity of two cascaded connected BSC channels assuming that all have the same transition probability diagram with p=0.2 Prove that the information capacity of a continuous channel of bandwidth W hertz, perturbed by additive		[2]
Q.3(c)			[4]
	Gaussian noise of power spectral density N ₀ /2 is given by $C = W \log_2 \left(1 + \frac{P}{N_0 W}\right)$ bit	cs/sec.	[6]
Q.4(a) Q.4(b)	2.4(b) Explain the Singleton and the Humming bounds for linear block codes.		[2] [4]
Q.4(c)			[6]
Q.5(a) Q.5(b)			[2] [4]
Q.5(c)	For nonsystematic coding in (7, 3) cyclic code (under <i>GF</i> (2)) with generate $(1+x)(x^3+x+1)$, determine generator matrix, G & parity check matrix, H.	r polynomial g(x) =	[6]
Q.6(a) Q.6(b)) Draw convolutional encoder, state diagram and its one stage of trellis diagram with transfer function matrix $G(x) = [1+x^2 x+x^2]$.		[2]
Q.6(c)			[4] [6]
Q.7(a) Q.7(b)	· ·		[2]
Q.7(c)	digital signature? Discuss RSA algorithm with suitable example.		[4] [6]

:::::29/11/2019:::::E