BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:	BE	SEMESTER : VII	
BRANCH		SESSION : MO/19	
SUBJECT: MEC1011 PROBABILITY MODELS & STOCHASTIC PROCESSES			
TIME:	3.00Hrs.	FULL MARKS: 60	
INSTRUCTIONS:			
1. The question paper contains 7 questions each of 12 marks and total 84 marks.			
 Candidates may attempt any 5 questions maximum of 60 marks. The missing data, if any, may be assumed suitably. 			
 Before attempting the question paper, be sure that you have got the correct question paper. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 			
Q.1(a)	Define random variable and its distribution function. $\left(\frac{x}{4} + K 0 < x < 6\right)$		[2]
Q.1(b)	The continuous random variable with density function $f(x) = \begin{cases} \frac{x}{9} + K & 0 \le x \le 6\\ 0 & otherwise \end{cases}$. If the probability density of a random variable is given by $f_X(x) = K(1 - x^2)$ 0	Find $P(2 \le x \le 5)$ [[4]
Q.1(c)	If the probability density of a random variable is given by $f_X(x) = K(1 - x^2) 0$	x < 1. Find the	[6]
	value of K and $F_X(x)$.		
Q.2(a)	Explain central limit theorem with example.	I	[2]
Q.2(b)	Consider that a pdf of a random variable X is $f_X(x) = \begin{cases} \frac{1}{\kappa} - 2 \le x \le 3\\ 0 & otherwise \end{cases}$. Another	random variable is	[4]
	defined as Y=2X. Find (a) value of K (b) E(Y).		
Q.2(c)	Given the function $f_{X,Y}(x,y) = \begin{cases} b(x+y)^2 & -2 < x < 2 \text{ and } -3 < y < 3 \\ 0 & otherwise \end{cases}$. Find t	he constant b such [[6]
	that this is a valid joint density function. Determine the marginal density function	$f_X(x)$ and $f_Y(y)$.	
Q.3(a)	Explain Jointly Gaussian random variables.	I	[2]
Q.3(b) Q.3(c)	Discuss the sequences of random variables and its convergence. $\begin{pmatrix} xy \\ y \end{pmatrix} = c + c + c + c + c + c + c + c + c + c$	2	[4] [6]
Q.J(C)	The joint density function for X and Y is $f_{X,Y}(x, y) = \begin{cases} \frac{xy}{9} & 0 < x < 2 \text{ and } 0 < y < 0 \\ 0 & otherwise \end{cases}$	³ . Show that X and	[0]
	Y are uncorrelated.		
Q.4(a)	Explain sampling theory in stochastic process.	1	[2]
Q.4(b)	The joint density functions of two random variables is given by $18v^2$		[4]
$\mathbf{O}(\mathbf{A}(\mathbf{c}))$	$f_{X,Y}(x,y) = \frac{18y^2}{x^3}$ for $2 < x < \infty$ and $0 < y < 1$. Find (a) E[X] (b) E[Y]. A random process defined as X(t)= A coswt + B sinwt where A and B are uncorrected.	related zero mean	FZ 1
Q.4(C)	random variables having the variance σ^2 . Find (a) autocorrelation function (b) she		[o]
	sense stationary.		
Q.5(a)	Explain Thermal noise.		[2]
Q.5(b)	The power spectral density of X(t) is given by $S_{XX}(w) = \begin{cases} 1 + w^2 \text{ for } w \\ 0 \text{ otherwise} \end{cases}$	<1 . Find the $[$	[4]
Q.5(c)	autocorrelation function. Discuss the Markov process and Wiener process with examples.		[6]
			[6]
Q.6(a) Q.6(b)	Describe Linear filtering of stochastic process. Explain autoregressive model of stochastic process.		[2] [4]
Q.6(c)	X(t) is a stationary random process with spectral density $S_{XX}(w)$. Y(t) is another in	ndependent random	[6]
	process, $Y(t) = Acos(w_c t + \theta)$, where θ is a random variable uniformly distrib Find the spectral density function of $Z(t)=X(t)Y(t)$.	uted over $(-\pi,\pi)$.	
0.7(-)			101
Q.7(a) Q.7(b)	Explain spectral estimation using AR model. Explain Kalman filter with example.		[2] [4]
Q.7(c)	Define an optimum filter? Derive the expression for a Wiener filter as an optimum		[6]

:::::09/12/2019E:::::