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Q.1(a) Define random variable and its distribution function. [2] 
 

Q.1(b) The continuous random variable with density function 𝑓(𝑥) =
+ 𝐾   0 ≤ 𝑥 ≤ 6

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. Find 𝑃(2 ≤ 𝑥 ≤ 5) 

 
[4] 

Q.1(c) If the probability density of a random variable is given by 𝑓 (𝑥) = 𝐾(1 − 𝑥 )  0 < 𝑥 < 1. Find the 
value of K and 𝐹 (𝑥). 

[6] 

   
Q.2(a) Explain central limit theorem with example. [2] 
Q.2(b) 

Consider that a pdf of a random variable X is 𝑓  (𝑥) =
 − 2 ≤ 𝑥 ≤ 3

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 . Another random variable is 

defined as Y=2X. Find (a) value of K (b) E(Y). 

[4] 

Q.2(c) Given the function 𝒇𝑿,𝒀(𝒙, 𝒚) =
𝒃(𝒙 + 𝒚)𝟐   − 𝟐 < 𝒙 < 𝟐  𝒂𝒏𝒅 − 𝟑 < 𝒚 < 𝟑

𝟎                  𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 . Find the constant b such 

that this is a valid joint density function. Determine the marginal density function 𝒇𝑿(𝒙) and  𝒇𝒀(𝒚).                   

[6] 

   
Q.3(a) Explain Jointly Gaussian random variables. [2] 
Q.3(b) Discuss the sequences of random variables and its convergence. [4] 
Q.3(c) 

The joint density function for X and Y is 𝑓 , (𝑥, 𝑦) =
  0 < 𝑥 < 2 𝑎𝑛𝑑 0 < 𝑦 < 3

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 . Show that X and 

Y are uncorrelated. 

[6] 

   
Q.4(a) Explain sampling theory in stochastic process. [2] 
Q.4(b) The joint density functions of two random variables is given by  

𝒇𝑿,𝒀 (𝒙, 𝒚) =
𝟏𝟖𝒚𝟐

𝒙𝟑   𝒇𝒐𝒓 𝟐 < 𝒙 < ∞ 𝒂𝒏𝒅 𝟎 < 𝒚 < 𝟏.  Find (a) E[X] (b) E[Y]. 

[4] 

Q.4(c) A random process defined as X(t)= A coswt + B sinwt where A and B are uncorrelated, zero mean 
random variables having the variance 𝜎  . Find (a) autocorrelation function (b) show that X(t) is wide 
sense stationary.          

[6] 

   
Q.5(a) Explain Thermal noise. [2] 
Q.5(b) The power spectral density of X(t) is given by  𝑺𝑿𝑿(𝒘) = 𝟏 + 𝒘 𝟐 𝒇𝒐𝒓 |𝒘| < 𝟏

𝟎      𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
  . Find the 

autocorrelation function. 

[4] 

Q.5(c) Discuss the Markov process and Wiener process with examples. [6] 
   

Q.6(a) Describe Linear filtering of stochastic process. [2] 
Q.6(b) Explain autoregressive model of stochastic process. [4] 
Q.6(c) X(t) is a stationary random process with spectral density 𝑆 (𝑤). Y(t) is another independent random 

process, 𝑌(𝑡) = 𝐴𝑐𝑜𝑠 (𝑤 𝑡 + 𝜃), where 𝜃 is a random variable uniformly distributed over (−𝜋, 𝜋). 
Find the spectral density function of Z(t)=X(t)Y(t). 

[6] 
 
 

   
Q.7(a) Explain spectral estimation using AR model. [2] 
Q.7(b) Explain Kalman filter with example. [4] 
Q.7(c) Define an optimum filter? Derive the expression for a Wiener filter as an optimum filter.   [6] 
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