BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)				
CLASS: BRANCH	MCA H: MCA		SEMESTER : V SESSION : MO/19	
TIME:	3 HOURS	SUBJECT: MCA5005 OPTIMIZATION THEORY	FULL MARKS: 60	
INSTRU 1. The 2. Cand 3. The 4. Befo 5. Table	CTIONS: question paper of lidates may atter missing data, if a re attempting th es/Data hand boo	contains 7 questions each of 12 marks and total 84 ma mpt any 5 questions maximum of 60 marks. any, may be assumed suitably. The question paper, be sure that you have got the corre ok/Graph paper etc. to be supplied to the candidates	arks. ect question paper. in the examination hall.	
Q.1(a) Q.1(b)	Write opportuni A company mak requires 50 min unit of Y that is time on machin Available proce 35 hours. The d 95 units. Compa at the end of the current week as	ities and shorcomings of operation research. es two products (X and Y) using two machines (A and B). utes processing time on machine A and 30 minutes proce produced requires 24 minutes processing time on machir e B. At the start of the current week there are 30 units ssing time on machine A is forecast to be 40 hours and o lemand for X in the current week is forecast to be 75 ur any policy is to maximise the combined sum of the units week. Formulate the problem of deciding how much of s a linear program.	Each unit of X that is produced essing time on machine B. Each ne A and 33 minutes processing of X and 90 units of Y in stock. on machine B is forecast to be nits and for Y is forecast to be of X and the units of Y in stock of each product to make in the	[4] [8]
Q.2(a) Q.2(b)	Explain corner p Maximize $z = 3x$ subject to $-x_1 + 2x_2 \le 4$ $3x_1 + 2x_2 \le 14$ $x_1 - x_2 \le 3$ $x_1, x_2 \ge 0$	point method of solving LPP graphically. x ₁ + 2x ₂		[4] [8]
Q.3(a) Q.3(b)	Show primal due Solve following Max $Z = -2x1 - x^2$ subject to $-3x1 - x2 \le -3$ $-4x1 - 3x2 \le -6$ $-x1 - 2x2 \le -3$ and $x1, x2 \ge 0$;	al relationship with example. problem by dual simplex method 2		[4] [8]
Q.4)	Solve following $z = x_1 + 4x_2$ subject to $2x_1 + 4x_2 \le 7$ $5x_1 + 3x_2 \le 15$ x_1, x_2 are integer	using gomory's cut ers ≥ 0		[12]
Q.5(a)	Solve following Max Z = x1 + 2x2 Subject to x1 + x1 + 2x2 \leq 5 3x1 + x2 \leq 6 and Write advantage	using revised simplex method 2 $\cdot x2 \le 3$ d x1, x2 ≥ 0 e of using dynamic programming on LPP		[8]
Q.6	Solve given prof Maximize $z = 2$ subject to the c $6x_1 + 5x_2 \le 25$ $x_1 + 3x_2 \le 10$ $x_1 \ge 0$ and $x_2 \ge$	blem using branch and bound method $2x_1 + 3x_2$ constraints :		[12]
Q.7(a) Q.7(b)	Write steps to s How to reduce a	olve by wolfe's modified simplex method. a NLPP to separable form.		[6] [6]