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Q.1(a) What are the features of a good language and compiler? [2] 
Q.1(b) What is the front-end and the back-end of a compiler?  Explain in details. [4] 
Q.1(c) Explain the various phases of a compiler with help of the following program. 

main()  { 
int a, b; 
float c,d; 
c=a+b*10; d=a-b/2.0; 
    } 

[6] 

   
Q.2(a) Which of the following expressions have l-values and / or r-values. 

     (i)   A[I+1]     (ii)  * A     (iii) & A     (iv)  &( * A)     (vi)  * (&(&A))    (v)   *( & A) 
[2] 

Q.2(b) Consider the following C-program. 
int main( )    
 {    int  i, n;     fro (i=0; i< N; i++);     } 
Is there any lexical error in the given program? Justify your answer. 

[4] 

Q.2(c) Write a Lex program that will check no. of  a’s is divisible by 2 or no. of  b’s is divisible by 3. [6] 
   

Q.3(a) What are the  steps to eliminate left recursion in CFG? [2] 
Q.3(b) Consider the following grammar having two non-terminals : {A, D}, 

five terminals : {a, b, c, d, f, g} and  
two regenerating/production rules : {     AabcDfg,           AabcDgf          }                                 
Identify the problem present in the grammar that cause further inconvenient in design of a Top-
down parser. 

[4] 

Q.3(c) Refer to question 3(b) 
i) Find the precedence table. 
ii) Explain the operator precedence parsing algorithm. 

[6] 

   
Q.4(a) Explain Recursive Descent Parser with suitable example. [2] 
Q.4(b) Consider the grammar: 

          ETE',  E'E | e, TF|T',  T'T|e, FPF', F'*F'|e,      P(E)|a|b|e 
Here, e stands for null (epsilon). 
     i) Compute FIRST & FOLLOW for each non terminal of the above grammar. 
     ii) Find the predictive parsing table and conclude whether the grammar  
         Is LL (1) or not. 

[4] 

Q.4(c) Consider the grammar  
               S Aa|bAc|Bc|bBa 
               A  d   
               B  d   
Show the grammar is LR (1) but not LALR (1). 

[6] 

   
Q.5(a) Differentiate between the Abstract Syntax Tree and the Directed Acyclic Graphs with suitable 

example. 
[2] 

Q.5(b) Consider the following grammar: 
S xxW  { printf “1”} 
S  y      { printf “2”} 
W Sz    { printf “3”} 
Construct the annotated parse tree to find out the output for the input expression “xxxxyzz”. 

[4] 
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Q.5(c) Write Three address code generation process for the following expression: 
If  ( (a<b) or ((c<d) and (e>f)))  
 {    Z = X+Y;  } 
else  
      Z=Z+1; 

[6] 

   
Q.6(a) Differentiate between SDD and SDT. Also, discuss different types of SDT’s with simple examples. [2] 
Q.6(b) What do you mean by runtime storage allocation? Explain the difference between static and dynamic 

allocations. 
[4] 

Q.6(c) Consider the following grammar 
E E +T,     E   T 
T T*F,      T F,       F id 
Write corresponding semantic action for each of the Non-Terminal, so that postfix expression can be 
obtained for any infix expression. Construct the annotated parse tree for the input expression 2*4+ 
(3+4/6). 

[6] 

   
Q.7(a) What are the main purposes for  optimization techniques? [2] 
Q.7(b) Explain the following with suitable examples: 

(i) Loop Fission   (ii) Loop Interchange   (iii)Loop Reversal  (iv) Loop Splitting 
[4] 

Q.7(c) i) Consider the following C code segment.  
for (i = 0; i < n; i++) {      
for (j = 0; j < n; j++) { 
           if (i%2)  
  {x + = (4 * j + 5 * i);     y + = (7 + 4 * j);  } }   } 
Modify the program using suitable optimizing techniques 
 
ii) Specify the necessary and sufficient conditions for performing loop optimization and dead code 
elimination. Give suitable examples. 

[6] 
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