SUBJECT: IT7043 COMPILER DESIGN

TIME:3:00 HOURS

FULL MARKS: 60

INSTRUCTIONS:

1. The question paper contains 7 questions each of 12 marks and total 84 marks.
2. Candidates may attempt any 5 questions maximum of 60 marks.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q.1(a) What are the features of a good language and compiler?
Q.1(b) What is the front-end and the back-end of a compiler? Explain in details.
Q.1(c) Explain the various phases of a compiler with help of the following program. main() \{
int a, b;
float c,d;
$c=a+b * 10 ; d=a-b / 2.0 ;$
\}
Q.2(a) Which of the following expressions have l-values and / or r-values.
(i) $\mathrm{A}[\mathrm{I}+1]$
(ii) * A
(iii) \& A
(iv) $\&\left({ }^{*} A\right)$
(vi) * $(\mathscr{\&}(\notin A)) \quad(v) \quad$ * $(\& A)$
Q.2(b) Consider the following C-program.
int main()
\{ int i, n; fro ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$); \}
Is there any lexical error in the given program? Justify your answer.
Q.2(c) Write a Lex program that will check no. of a 's is divisible by 2 or no. of b 's is divisible by 3 .
\}
Q.3(a) What are the steps to eliminate left recursion in CFG?
Q.3(b) Consider the following grammar having two non-terminals: $\{A, D\}$, five terminals : $\{a, b, c, d, f, g\}$ and two regenerating/production rules : \{ $A \rightarrow a b c D f g, \quad A \rightarrow a b c D g f \quad\}$ Identify the problem present in the grammar that cause further inconvenient in design of a Topdown parser.
Q.3(c) Refer to question 3(b)
i) Find the precedence table.
ii) Explain the operator precedence parsing algorithm.
Q.4(a) Explain Recursive Descent Parser with suitable example.
Q.4(b) Consider the grammar:
$E \rightarrow T E^{\prime}, E^{\prime} \rightarrow E|e, T \rightarrow F| T^{\prime}, T^{\prime} \rightarrow T\left|e, F \rightarrow P^{\prime}, F^{\prime} \rightarrow{ }^{*} F^{\prime}\right| e, \quad P \rightarrow(E)|a| b \mid e$
Here, e stands for null (epsilon).
i) Compute FIRST \& FOLLOW for each non terminal of the above grammar.
ii) Find the predictive parsing table and conclude whether the grammar Is LL (1) or not.
Q.4(c) Consider the grammar

$$
\begin{aligned}
& S \rightarrow A a|b A c| B c \mid b B a \\
& A \rightarrow d \\
& B \rightarrow d
\end{aligned}
$$

Show the grammar is LR (1) but not LALR (1).
Q.5(a) Differentiate between the Abstract Syntax Tree and the Directed Acyclic Graphs with suitable example.
Q.5(b) Consider the following grammar:
$\mathrm{W} \rightarrow$ Sz \quad \{ printf " 3 " $\}$
Construct the annotated parse tree to find out the output for the input expression "xxxxyzz".
Q.5(c) Write Three address code generation process for the following expression:

If ($(\mathrm{a}<\mathrm{b})$ or $((\mathrm{c}<\mathrm{d})$ and $(\mathrm{e}>\mathrm{f})))$
\{ $Z=X+Y ;\}$
else
$Z=Z+1 ;$
Q.6(a) Differentiate between SDD and SDT. Also, discuss different types of SDT's with simple examples.
Q.6(b) What do you mean by runtime storage allocation? Explain the difference between static and dynamic allocations.
Q.6(c) Consider the following grammar
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}, \quad \mathrm{E} \rightarrow \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~F}, \quad \mathrm{~T} \rightarrow \mathrm{~F}, \quad \mathrm{~F} \rightarrow \mathrm{id}$
Write corresponding semantic action for each of the Non-Terminal, so that postfix expression can be obtained for any infix expression. Construct the annotated parse tree for the input expression $2^{*} 4+$ (3+4/6).
Q.7(a) What are the main purposes for optimization techniques?
Q.7(b) Explain the following with suitable examples:
(i) Loop Fission (ii) Loop Interchange (iii)Loop Reversal (iv) Loop Splitting
Q.7(c) i) Consider the following C code segment.
for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$) \{
for $(\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++)\{$ if ($\mathrm{i} \% 2$)
$\left.\left.\left\{x+=\left(4^{*} j+5 * i\right) ; \quad y+=\left(7+4^{*} j\right) ;\right\}\right\}\right\}$
Modify the program using suitable optimizing techniques
ii) Specify the necessary and sufficient conditions for performing loop optimization and dead code elimination. Give suitable examples.

