BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI				
CLASS: BRANCH	BE I: IT	SEMESTER : VII SESSION : MO/19		
	SUBJECT: IT7043 COMPILER DESIGN			
TIME:3:0	10 HOURS	FULL MARKS: 60		
INSTRU 1. The 2. Cand 3. The 4. Befo 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks. idates may attempt any 5 questions maximum of 60 marks. nissing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct quest s/Data hand book/Graph paper etc. to be supplied to the candidates in the ex	tion paper. Camination hall.		
Q.1(a) Q.1(b) Q.1(c)	What are the features of a good language and compiler? What is the front-end and the back-end of a compiler? Explain in details. Explain the various phases of a compiler with help of the following program. main() { int a, b; float c,d; c=a+b*10; d=a-b/2.0; }	[2 [4 [6		
Q.2(a)	Which of the following expressions have <i>l</i> -values and / or <i>r</i> -values.	、[2		
Q.2(b)	(i) A[i+1] (ii) * A (iii) & A (iv) & (* A) (vi) * (& (& A)) (v) * (& A Consider the following C-program. int main() { int i, n; fro (i=0; i< N; i++); }	[4		
Q.2(c)	Is there any lexical error in the given program? Justify your answer. Write a Lex program that will check no. of <i>a</i> 's is divisible by 2 or no. of <i>b</i> 's is c	livisible by 3. [6		
Q.3(a) Q.3(b)	What are the steps to eliminate left recursion in CFG? Consider the following grammar having two non-terminals : {A, D}, five terminals : {a, b, c, d, f, g} and two regenerating/production rules : { $A \rightarrow abcDfg$, $A \rightarrow abcDgf$ } Identify the problem present in the grammar that cause further inconvenient in decume recurse	[2 [4 design of a Top-		
Q.3(c)	Refer to question 3(b) i) Find the precedence table. ii) Explain the operator precedence parsing algorithm.	[6		
Q.4(a) Q.4(b)	Explain Recursive Descent Parser with suitable example. Consider the grammar: $E \rightarrow TE', E' \rightarrow E \mid e, T \rightarrow F \mid T', T' \rightarrow T \mid e, F \rightarrow PF', F' \rightarrow *F' \mid e, P \rightarrow (E) \mid a \mid b \mid e$ Here, <i>e</i> stands for null (epsilon). <i>i</i>) Compute FIRST & FOLLOW for each non terminal of the above grammar. <i>ii</i>) Find the predictive parsing table and conclude whether the grammar	[2 [4		
Q.4(c)	Is LL (1) or not. Consider the grammar $S \rightarrow Aa bAc Bc bBa$ $A \rightarrow d$ $B \rightarrow d$ Show the grammar is LR (1) but not LALR (1).	[6		
Q.5(a)	Differentiate between the Abstract Syntax Tree and the Directed Acyclic (example.	Graphs with suitable [2		
Q.5(b)	Consider the following grammar: $S \rightarrow xxW \{ printf "1" \}$ $S \rightarrow y \{ printf "2" \}$ $W \rightarrow Sz \{ printf "3" \}$	[4		

Construct the annotated parse tree to find out the output for the input expression "xxxxyzz".

Q.5(c)	<pre>Write Three address code generation process for the following expression: If ((a<b) ((c<d)="" (e="" and="" or="">f))) { Z = X+Y; } else Z=Z+1;</b)></pre>	[6]
Q.6(a) Q.6(b)	Differentiate between SDD and SDT. Also, discuss different types of SDT's with simple examples. What do you mean by runtime storage allocation? Explain the difference between static and dynamic allocations.	[2] [4]
Q.6(c)	Consider the following grammar $E \rightarrow E + T$, $E \rightarrow T$ $T \rightarrow T^*F$, $T \rightarrow F$, $F \rightarrow id$ Write corresponding semantic action for each of the Non-Terminal, so that postfix expression can be obtained for any infix expression. Construct the annotated parse tree for the input expression 2*4+ (3+4/6).	[6]
Q.7(a)	What are the main purposes for optimization techniques?	[2]
Q.7(b)	Explain the following with suitable examples:	[4]
Q.7(c)	<pre>i) Consider the following C code segment. for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (i%2) {x + = (4 * j + 5 * i); y + = (7 + 4 * j); } } Modify the program using suitable optimizing techniques</pre>	[6]

ii) Specify the necessary and sufficient conditions for performing loop optimization and dead code elimination. Give suitable examples.

:::::02/12/2019:::::E