BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS:	IMSC	SEMESTER : V				
BRANCH	ł: FT	SESSION: MO/19				
TIME:	SUBJECT: IMF5009 FOOD ENGINEERING-II- HEAT AND MASS TRANS 3 HOURS	FER FULL MARKS: 60				
1. The 2. Cand 3. The 4. Befo 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks. lidates may attempt any 5 questions maximum of 60 marks. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct quest es/Data hand book/Graph paper etc. to be supplied to the candidates in the ex	camination hall.				
Q.1(a) Q.1(b)						
Q.1(c)	A cylindrical hot gas duct, 0.5 m inside radius, has an inner layer of fireclay bric 0.27 m thickness. The outer layer, 0.14 m thick, is made of a spherical brick (k brickwork is enclosed by an outer steel cover which has a temperature of 65°C. Th of the composite cylindrical wall of the duct is 400 °C. Neglecting the thermal r cover. Calculate: i. The rate of heat loss per meter of the duct ii. The interface temperature between the ceramic layers. iii. What fraction of the total resistance is offered by the spherical brick lay	k= 0.92 W/m °C). The ne inside temperature esistance of the steel				
Q.2(a)	Define the following terms: i. Black body ii. Opaque body iii. Gray body iv. White body	[2]				
Q.2(b) Q.2(c)	What do you mean by dropwise condensation and filmwise condensation? Discuss typical boiling curve and regimes with neat sketch.	[4] [6]				
Q.3(a)	Classify heat exchanger equipments on the basis of the basic operation, constr	ruction, heat transfer [2]				
Q.3(b)	and flow arrangements? A hot fluid enters a double pipe heat exchanger at a temperature of 423 K and i K by a cold fluid entering at 311 K and heated to 339 K. Determine the logarithm for parallel flow.					
Q.3(c)	Draw neat sketch of shell and tube heat exchanger and explain in brief it's work	ting. [6]				
Q.4(a) Q.4(b)	Define diffusivity. Oxygen (A) is diffusing through non-diffusing carbon monoxide (B) under steady state conditions, at a total pressure of 1×10^5 N/m ² and temperature 273 K. The partial pressure of oxygen is 13000 N/m ² at one point and 6500 N/m ² at other point. The distance between the points is 0.002 m. Determine the flux (rate of diffusion) of oxygen in kmol/ (m ² s). The diffusivity for the mixture is 1.87×10^{-5} m ² /s. R = 8314 N. m/kmol K					
Q.4(c)	The vapour pressure of n-heptane (A) and n-octane (B) are given in the follow empirical relation between y and x for this system at constant pressure of 101.3 Data:T, K341.7352.4366.3380.2394.1	kPa.				

Т, К	341.7	352.4	366.3	380.2	394.1	398.6
p ^o _A	101.3	136.6	197.3	283.9	399.9	455.9
р ^о в	16.1	23.1	37.1	57.8	87.2	101.3

With the help of empirical equation generate vapor-liquid equilibrium data.

Q.5(a)	Define the following term: i. Humidity ii. Relative humidity iii. Dew point temperature iv. Wet bulb temperature	[2]
Q.5(b)	In a mixture of dry air and water vapour at a total pressure of 750 mm of Hg. Determine the humidity ratio of the air in gram of water vapour per kg of dry air (gm water vapour/kg dry air).	[4]
Q.5(c)	Discuss different mass transfer theories.	[6]
Q.6(a) Q.6(b) Q.6(c)	What is the difference between physisorption and chemisorptions? Explain the methods of supersaturation. What are the factors affecting the selection of a solvent for liquid-liquid extraction?	[2] [4] [6]
Q.7(a) Q.7(b) Q.7(c)	What do you mean by conductive and convective drying? Sketch and explain typical drying rate curve. What is pasteurization and its purpose in food industry? What is the difference between pasteurization of packaged and unpackaged foods?	[2] [4] [6]

:::::04/12/2019:::::M