BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

SEMESTER: VII

SESSION: MO/2019

FULL MARKS: 25

[2]

CLASS: BE BRANCH: EEE

SUBJECT : EE8217 EHV POWER TRANSMISSION

TIME: 1.5 HOURS

INSTRUCTIONS:

- 1. The total marks of the questions are 30.
- 2. Candidates may attempt for all 30 marks.
- 3. In those cases where the marks obtained exceed 25 marks, the excess will be ignored.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. The missing data, if any, may be assumed suitably.
- Q1 (a) Prove that $R_{eq} = (6.r.R^5)^{\frac{6}{36}}$, Where R_{eq} is the Geometrical Mean radius for bundle of 6 sub-conductors having bundle radius R and bundle spacing B.

(b) Consider a matrix [A] given below:

 $[A] = \begin{pmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{pmatrix}$

Calculate the (1) Eigen values of matrix [A] (2) Model Matrix [M], Where M is the Eigen vectors of matrix [A]. & (3) Diagonalize the matrix [A].

- (c) Explain about effects of conductor resistance of e.h.v lines. [1]
- Q2 (a) Explain about field of sphere gaps for measurements of extra high voltages. [2]
 - (b) Mention the significance of Mangoldt formulae and deduce the expression of surface [3] voltage gradient for the outer phases in case of 3-phase ac line with horizontal configuration of phase.
- Q3 (a) How conductor size, transmission line length & phase difference between sending and [2] receiving end voltages affect the power handling capacity of a EHV lines?
 - (b) A Charge of 20 μ C is placed at a distance of 4 meters from the centre of a sphere of [3] radius 1 metre (2-metre diameter sphere). Calculate the magnitude, polarity, and location of a point charge Q_2 which will make the sphere at zero potential.

Q4	(a)	In case of low loss transmission line. (Assume no load conditions.)	[2]
	Prove that $ I_s = \int c/L$. sin $\beta I \cdot v_R $		
		And C = $(1/\omega Z_0)$. Sin BI farad.	

- (b) Explain about the improvements obtained by the use of static var compensators (SVC). [3]
- Q5 (a) In case of Transmission line with shunt reactor compensation for voltage control at no [2] load, Prove that the generalized constants for the entire system is-

$$\begin{pmatrix} A_T & B_T \\ C_T & D_T \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}_{Line} - jB_{sh} \begin{pmatrix} B & 0 \\ 2A - jB_{sh}B & B \end{pmatrix}$$
, where B_{sh} is real

number.

(b) Using the property of transmission line with shunt reactor compensation for voltage [3] control at no load (Assume $|E_s| = |E_R| = E$) & $B_{Sh} = 2$). Prove that $\left| \frac{B}{(A-1)} \right| = 0.5$,

where terms have own standard meanings

- Q6 (a) Write short technical notes on the following-
 - (1) Corona loss and methods of its reduction.
 - (2) Neutral grounding System & charge matrix.

[5]