BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	BE I: EEE	SEMESTER : V SESSION : MO/19	9
TIME:	SUBJECT: EE5203 ELECTRICAL MACHINE II 3 HOURS	FULL MARKS: 60	D
INSTRUC 1. The c 2. Cand 3. The r 4. Befor 5. Table	CTIONS: question paper contains 7 questions each of 12 marks and total 84 marks. idates may attempt any 5 questions maximum of 60 marks. nissing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct question es/Data hand book/Graph paper etc. to be supplied to the candidates in the exami	paper. nation hall.	
Q.1(a) Q.1(b) Q.1(c)	What do you mean by integral slot winding and fractional pitch winding? By means of diagram, describe the main parts of alternator with their function. A 3 phase, 16 poles synchronous generator has a star connected winding with 14 conductors per slot. The flux per pole is 0.03wb and speed is 375 rpm. Calculate the and the induced emf per phase.	14 slots and 10 Ine frequency	[2] [4] [6]
Q.2(a) Q.2(b)	Explain the term synchronous reactance. A 50 kVA, 500V, single phase alternator gave the following results in open and short Field Current(A): 5 10 15 20 25 30 EMF(volts): 125 250 370 480 566 640 S.C. Arm. current(A): 73 146 220 Using ampere turn method, find the full load voltage regulation at unity power factor power factor.	circuit tests: and 0.8 leading	[2] [4]
Q.2(C)	Explain the phenomena armature reaction when alternator is delivering a load at unit pf.	y pf and lagging	[6]
Q.3(a) Q.3(b) Q.3(c)	 In what respect is the operation of alternator on infinite bus different from parallel of alternators. State the condition necessary for paralleling alternator and describe one method of A 3 phase star connected synchronous generator supplies a current of 10 amp having 20 degree lagging at 400 volts(phase voltage). Find (a) the load angle (b) Id and Iq of armature current (c) Voltage regulation, when Xd is 10 ohm, Xq is 6.5 ohm. Neglect armature residues 	peration of two synchronizing. y phase angle of stance.	[2] [4] [6]
Q.4(a)	A 3-phase synchronous motor has 12 poles and operates from 440 volts, 50 Hz supplesed, if it takes a line current of 100A at 0.8 pf lead. What torque the motor will	y. Calculate its be developing?	[2]
Q.4(b)	Why is synchronous motor not self-starting? What method is generally used to start t	he synchronous	[4]
Q.4(c)	Explain V- Curve, Inverted V- Curve and synchronous condenser for synchronous mot	or.	[6]
Q.5(a) Q.5(b) Q.5(C)	Draw and explain the phasor diagram of a 3 phase induction motor. Derive the equation for torque developed by an induction motor and explain torque The power input to a 6 pole, 3 phase, 50 Hz induction motor is 42 kw, the speed is stator losses are 1.2 kw and the frictional and windage losses are 1.8 kw. Find sli losses, bhp and efficiency.	slip curve. s 970 rpm. The p, rotor copper	[2] [4] [6]
Q.6(a) Q.6(b)	Explain cogging and crawling phenomena of 3-phase induction motor. Discuss auto transformer and star delta starter for starting of 3-phase induction mot	or.	[6] [6]
Q.7(a) Q.7(b) Q.7(c)	Explain the operation of single phase induction motor by double field revolving theo Discuss the operation, characteristics and application of capacitor start induction motor A 0.5 hp, 230 V, single phase induction motor (split phase) takes a current of 4.2A lags by 10 degree for starting winding and a current of 6.2A lagging the voltage by 40 deg winding. Find (a) total current and pf at starting and during running. (b) phase angle between lags	ry. otor. ging the voltage ree for its main	[2] [4] [6]

(c) power drawn by starting and running winding, and (d) total power drawn.

:::::25/11/2019:::::M