BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI
 (END SEMESTER EXAMINATION)

CLASS:	BE
BRANCH:	ECE

TIME: $\quad 3$ HOURS

SEMESTER: V
SESSION : MO/19

FULL MARKS: 60

INSTRUCTIONS:

1. The question paper contains 7 questions each of 12 marks and total 84 marks.
2. Candidates may attempt any 5 questions maximum of 60 marks.
3. The missing data, if any, may be assumed suitably.
4. Before attempting the question paper, be sure that you have got the correct question paper.
5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
Q.1(a) Determine whether unit ramp sequence is power or energy signal.
Q.1(b) Find the zero-state response of the system described by the difference equation:
$y(n)-3 y(n-1)-4 y(n-2)=x(n)+2 x(n-1)$, with input, $x(n)=4^{n} u(n)$.
Q.1(c) i) Check whether the system: $y(n)=x(2 n)$, is static or dynamic and linear or non-linear.
ii) Find the inverse z-transform of the following system using contour integration:

$$
\begin{equation*}
X(z)=\frac{2}{z(z-0.5)} ; \text { ROC: }|z|>1 \tag{2+4}
\end{equation*}
$$

Q.2(a) Prove the formula for IDTFT, given by: $x(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{j \omega n} d \omega$.
Q.2(b) What are the drawbacks of DFT? Compute the DFT of the four-point sequence $x(n)=\left(\begin{array}{ll}0 & 1\end{array} 23\right)$.
Q.2(c) Find FFT of $x(n)=\cos \left(\frac{\pi}{4} n\right), 0 \leq n \leq 7$, using radix-2 Decimation in Time algorithm.
Q.3(a) If M and N are the orders of numerator and denominator of rational system function respectively, then how many multiplications and additions are required in direct form-I realization of that IIR filter?
Q.3(b) Obtain the cascade structure for the following systems:
$y(n)=-0.1 y(n-1)+0.72 y(n-2)+0.7 x(n)-0.252 x(n-2)$
Q.3(c) Sketch the ladder structure for the system:

$$
\begin{equation*}
H(z)=\frac{1-0.8 z^{-1}+0.5 z^{-2}}{1+0.1 \mathrm{z}^{-1}-0.72 \mathrm{z}^{-2}} \tag{6}
\end{equation*}
$$

Q.4(a) Draw the magnitude characteristics of a practical low pass filter with its different specifications.
Q.4(b) Distinguish between Type-I and Type-II Chebyshev filter. With the help of transfer function of TypeI Chebyshev filter, find an expression of the order of filter.
Q.4(c) Design an analog Butterworth filter that has a -2 dB passband attenuation at a frequency of 20 $\mathrm{rad} / \mathrm{sec}$ and atleast -10 dB stopband attenuation at $30 \mathrm{rad} / \mathrm{sec}$.
Q.5(a) What are the formulae used in converting an analog prototype lowpass filter to an arbitrary lowpass and high pass analog filters?
Q.5(b) Convert the single-pole lowpass Butterworth filter with system function, $H(z)=\frac{0.245\left(1+z^{-1}\right)}{1-0.509 z^{-1}}$ into a bandpass filter with upper and lower cutoff frequencies $\frac{3 \pi}{5}$ and $\frac{2 \pi}{5}$ respectively with passband frequency $\frac{\pi}{5}$.
Q.5(c) Design an analog Band Pass filter which passes the frequencies in the interval $5 \mathrm{kHz} \leq \mathrm{F} \leq 6 \mathrm{kHz}$. Let the filter be Butterworth with order $\mathrm{N}=3$. Determine the transfer function of the desired Band Pass filter.
Q.6(a) What is Matched-z transform? Explain it briefly.
Q.6(b) Explain the method of Impulse invariance method by taking the example of analog system function as: $\mathrm{H}_{\mathrm{a}}(\mathrm{s})=\sum_{\mathrm{k}=1}^{\mathrm{N}} \frac{\mathrm{C}_{\mathrm{k}}}{\mathrm{s}-\mathrm{p}_{\mathrm{k}}}$, where $\left\{\mathrm{C}_{\mathrm{k}}\right\}$ represent coefficients of distinct poles $\left\{\mathrm{p}_{\mathrm{k}}\right\}$.
Q.6(c) Design a digital Butterworth filter satisfying the constraints:

$$
\begin{equation*}
0.707 \leq|H(z)| \leq 1, \text { for } 0 \leq \omega \leq \frac{\pi}{2} \&|H(z)| \leq 0.2, \text { for } \frac{3 \pi}{4} \leq \omega \leq \pi \tag{6}
\end{equation*}
$$

with $\mathrm{T}=2$ sec using Bilinear Transformation. Design the filter in Direct form-II.
Q.7(a) Explain the term linear phase and state its importance in digital filter.
Q.7(b) Determine the expression of transfer function, $\mathrm{H}(\mathrm{z})$ for symmetric and antisymmetric FIR filters for odd value of sample length (i.e. $M=o d d$).
Q.7(c) The desired response of low pass filter is

$$
\begin{aligned}
H_{d}\left(e^{j \omega}\right) & =e^{-3 j \omega}, \quad-\frac{3 \pi}{4} \leq \omega \leq+\frac{3 \pi}{4} \\
& =0 \quad, \quad \frac{3 \pi}{4} \leq \omega \leq \pi
\end{aligned}
$$

Determine $H\left(e^{j \omega}\right)$ for $M=7$ using Hamming window.

