BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	B.TECH I: EEE	SEMESTER : III SESSION : MO/19	
TIME:	SUBJECT: EE203 ELECTRIC ENERGY GENERATION AND CONTROL 3 HOURS	FULL MARKS: 50	
INSTRU 1. The 2. Atter 3. The 4. Befo 5. Table	CTIONS: question paper contains 5 questions each of 10 marks and total 50 marks. mpt all questions. missing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct questio es/Data hand book/Graph paper etc. to be supplied to the candidates in the exar	n paper. nination hall.	
Q.1(a)	ive the comparison of steam power plant, hydro-electric power plant, diesel power plant and nuclear ower plant on the basis of operating cost, initial cost, efficiency, maintenance cost and availability of ource of power.		[5]
Q.1(b)	A power supply is having the following loads : Type of load Max. demand (k W) Diversity of group Demand factor Domestic 1500 1·2 0·8 Commercial 2000 1·1 0·9 Industrial 10,000 1·25 1 If the overall system diversity factor is 1·35, the plant capacity factor is 40% and the is 50%. Determine (i) the maximum demand on the supply system, (ii) the average d system (iii) connected load of each type, and (iv) reserve capacity of the plant. Selve if missing.	e annual load factor emand on the supply ect appropriate data	[5]
Q.2(a)	Define Draught. Discuss Natural and Induced Draught with neat diagram and list	out their merits and	[5]
Q.2(b)	Explain with a neat diagram the construction and working principle of Lancashire E	Boiler.	[5]
Q.3(a)	 A factory is located near a water fall where the usable head for power generation is 25 m. The factory requires continuous power of 400 kW throughout the year. The river flow in a year is (a) 10 m³ /sec for 4 months, (b) 6 m³ /sec for 2 months and (c) 1.5 m³ /sec for 6 months. (i) If the site is developed as a run-of-river type of plant, without storage, determine the standby capacity to be provided. Assume that overall efficiency of the plant is 80%. (ii) If a reservoir is arranged upstream, will any standby unit be necessary? What will be the excess 		[5]
Q.3(b)	power available? Discuss the Tangential flow hydro turbine with neat diagram and explain its different components. Also, explain the functions of the following with neat sketch: (i) dam (ii) spillways (iii) surge tank (iv) headworks (v) draft tube.		[5]
Q.4(a)	Explain the principle of operation of breeder reactor used in nuclear power ger	eration with a neat	[5]
Q.4(b)	Draw the schematic diagram of a nuclear power station and discuss its operation.		[5]
Q.5(a)	Explain the working of four stroke diesel engine with neat diagram.		[5]

Q.5(b) Explain the operating principle of solar plant. Draw the PV and IV characteristics of solar cell and explain [5] the maximum power point tracking algorithm with a neat flow chart.

:::::04/12/2019:::::M