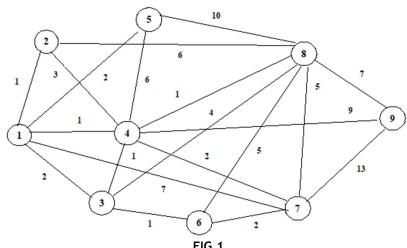
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI

	BIRL	A INSTITUTE OF TECHNOLOGY, MESRA, RANCHI		
CLASS: BRANCH	BE I: ECE		SEMESTER : V SESSION : MO/19	
TIME:	3 HOURS	SUBJECT: EC5205 DATA COMMUNICATION	FULL MARKS: 60	
2. Cand 3. The i 4. Befor	question paper contains 7 idates may attempt any 5 nissing data, if any, may b re attempting the questior	questions each of 12 marks and total 84 marks. questions maximum of 60 marks. be assumed suitably. In paper, be sure that you have got the correct que paper etc. to be supplied to the candidates in the o		
Q.1(a) Q.1(b) Q.1(c)	Compare the philosophica What is meant by E_b/N_o rat rate on E_b/N_o ratio? If the received signal level	dulation Noise? How is it caused? l differences between TCP/IP Protocol suite and OSI atio? What is its significance? What is the effect of s for a particular digital system is -151 dBW and the re ⁰ K, what is E _b /N _o ratio for a link transmitting at a ra	ignal strength and data ceiver system effective	[2] [4] [6]
Q.2(a) Q.2(b)				
Q.2(C)	Explain the Delta Modulation (DM) scheme with relevant block diagram and input-output signal [4] waveforms. Why the selection of the step-size is critical in DM scheme?			
Q.3(a) Q.3(b) Q.3(c)	What is meant by Hamming distance? What is its significance in Error detection schemes? What is meant by a Null Modem? Why is it required? Justify all connections of Null Modem. For a frame 1011000110110100101 received at the receiver, check whether there is any error in the frame using C.R.C. scheme, if the Generator polynomial $P(x)$ is $x^5 + x^4 + x^3 + x + 1$. What is the original message, if there is no error? Also mention the number of shift registers and exclusive-OR gates required for the hardware implementation of the same.			
Q.4(a) Q.4(b)	and termination, Authentication, Networking and Data transfer phases.			
Q.4(c)				
Q.5(a)	What do you understand allocated per channel in D	by Discrete Multitone (DMT) technology used in A	DSL? How the bits are	[2]
Q.5(b)	Compare Synchronous and Asynchronous TDM schemes for N number of sources in terms of bandwidth [- efficiency, number of time slots on the TDM frame, data rate of the multiplexed line, complexity and the buffer requirement to support high traffic load.			
Q.5(c)	The following 16 sources a of 246 Kbps: Analog 1.5 KHz b Analog 3 KHz bar Analog 4.5 KHz b Analog 6.0 KHz b 3 Digital sources 4 Digital sources	are to be multiplexed to obtain a synchronous TDM so andwidth. ndwidth. andwidth.	cheme with a data rate	[6]

• 5 Digital sources of 2700 bps synchronous. Implement the scheme as a block diagram, showing all relevant details.

- Q.6(a) When does a blocking condition occur in a two-stage (TS) digital switch? How this eventuality is [2] resolved in a TST switch?
- Q.6(b) Draw an I/O triangular switch connecting eight stations, and show the connection paths between the [4] stations, if the following stations are communicating each other: 1-7, 2-5, 3-6 and 4-8.
- There are 98 stations to be connected through a Crossbar Matrix switch. What will be the number of Q.6(c) [6] cross points required, if a Single stage switch is used? Compare it with the number of cross points required if a 3-stage Non-blocking (optimized) switch is used. What are the advantages of the second switch over the first switch?
- Q.7(a) What is meant by Congestion in a Packet switched network? How is it caused?
- [2] Q.7(b) The current Routing directory for Node 2 in ARPANET original version is given in Table 1. The delay [4] vectors received at Node 2 from the neighboring nodes are given in Table 2. Update Node 2's Routing directory based on the delay vectors received.

Destination	Delay	Next Node
1	5	4
2	0	-
3	1	3
4	3	4
5	6	8
6	5	8
7	6	3
8	2	8
9	8	8


Table-1: Node 2's current Routing directory.

From Node	From Node	From Node	From Node
'1'	'3'	'4'	'8'
0	2	4	2
4	2	3	3
2	0	2	4
1	3	0	2
2	4	2	2
3	2	1	2
4	5	2	2
1	2	1	0
2	5	1	3

Table -2: Delay vectors received at Node 2.

Find out the Least cost paths from **Node 9** to all other nodes for the network shown in Figure 1 using Q.7(c) [6] Bellman-Ford algorithm and form the **Node 9's** Routing table accordingly.

:::::25/11/2019:::::M

